
On the Scalability of Testing the Crash Consistency of PM Systems

Duo Zhang†, Om Rameshwar Gatla†, Abdullah Al Raqibul Islam‡, Dong Dai‡, Mai Zheng†

†Iowa State University ‡University of North Carolina at Charlotte

1 Motivation
Persistent memory (PM) technologies [4, 8] can provide
durability with latencies comparable to DRAM. Such
characteristics bridge the gap between traditional mem-
ory and storage, and have inspired many PM-based op-
timizations in both user-level applications [5, 19] and
operating system (OS) kernels [17, 21]. While Intel is
winding down its Optane PM business, it is expected that
vendor-neutral CXL-based PMs will continuously evolve
and trigger new system optimizations [1, 6, 3].

Unfortunately, building correct PM-based systems is
challenging: writes to PM need to be carefully or-
dered and persisted to avoid inconsistent or unrecover-
able states upon crashes, which is non-trivial given the
subtle behavior of modern cache and memory subsys-
tem [14, 15, 7, 16, 10, 20]. To address the challenge,
many testing tools have been proposed [12, 11, 13]. Nev-
ertheless, most of them focus on user-level PM appli-
cations, leaving the OS kernel and the potential depen-
dencies unexplored. In fact, one recent study shows
that there are various PM-related issues at the kernel
level [18], which calls for tool support for full systems.

Notably, Kalbfleisch et al. proposed the VINTER [11]
framework recently which can support full-system test-
ing and have been applied to test multiple kernel-level
PM file systems (e.g., NOVA [17], PMFS [2]). While
promising, our experiments on VINTER exposed a scal-
ability challenge in (at least) three aspects as follows:

First, writes to the target PM file system can easily
overwhelm VINTER. As shown in Table 1, we apply
three small workloads on NOVA which generates three
different sizes of writes (i.e., 256, 256*4, and 256*20
bytes). It took VINTER about 1 hour 45 minutes (‘1h
45m’) to complete the test under the 256*4 workload;
and with 256*20 bytes of write, VINTER cannot finish
within 12 hours. Further analysis shows that among the
three core phases of VINTER (i.e., record, replay, test),
both the replay and test phases are the bottlenecks.

Second, VINTER cannot scale to typical PM appli-

Writes
(Bytes)

Total
Runtime

Runtime for Each Phase
Record Replay Test

256 6m 47s 8s 5m 1m 39s
256*4 1h 45m 16s 55m 42s 48m 30s
256*20 - 21s >12h -

Table 1: Scalability Issue Observed.

PM Software Stack VINTER Ours
Application (e.g., B-tree) × ✓

Library (e.g., PMDK) × ✓
File System (e.g., NOVA) ✓ ✓
Driver (e.g., NVDIMM) ✓ ✓

Table 2: Comparison of PM Layers Supported.

cation scenarios which require important libraries (e.g.,
PMDK) as it only support minimal-built OS. Moreover,
we found that the size of the emulated PM device in
VINTER is too small to be used as the memory pool
for PMDK. Since VINTER relies on the PM device size
internally (i.e., the address range is used for tracing),
extending VINTER to support large PM devices (and
PMDK) would require substantial efforts.

Last but not the least, VINTER has little diagnosis
support to help understand complicated crash issues.

2 Our Approach
We are exploring a new method based on PANDA [9] to
support scalable testing of realistic full PM system stack.
As shown in Table 2, the prototype can support full PM
software stack (e.g., PMDK-based B-tree on PM kernel
modules). We are able to record all PM instructions to
generate crash images under the full system stack. More-
over, we record snapshots and non-determinism logs to
facilitate understanding full-system behavior. In addi-
tion, we are investigating a parallelism mechanism to
generate crash states at different barrier points in parallel,
which is expected to improve the scalability effectively.

1



References

[1] Compute express link. https://www.
computeexpresslink.org/.

[2] Pmfs introduction. https://github.com/linux-pmfs/
pmfs.

[3] Update on pmdk and our long term support
strategy. https://pmem.io/blog/2022/11/update-on-
pmdk-and-our-long-term-support-strategy/.

[4] What is persistent memory? https://www.snia.org/
education/what-is-persistent-memory.

[5] Pmem-redis. https://github.com/pmem/pmem-
redis, 2021.

[6] Ankit Bhardwaj, Todd Thornley, Vinita Pawar,
Reto Achermann, Gerd Zellweger, and Ryan
Stutsman. Cache-coherent accelerators for persis-
tent memory crash consistency. In Proceedings of
the 14th ACM Workshop on Hot Topics in Storage
and File Systems, 2022.

[7] Vijay Chidambaram, Thanumalayan Sankara-
narayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash Con-
sistency. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP ’13),
Farmington, PA, November 2013.

[8] Jeremy Condit, Edmund B. Nightingale, Christo-
pher Frost, Engin Ipek, Benjamin Lee, Doug
Burger, and Derrick Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles, 2009.

[9] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin,
Tim Leek, and Ryan Whelan. Repeatable reverse
engineering with panda. In Proceedings of the
5th Program Protection and Reverse Engineering
Workshop, 2015.

[10] Om Rameshwar Gatla, Muhammad Hameed, Mai
Zheng, Viacheslav Dubeyko, Adam Manzanares,
Filip Blagojević, Cyril Guyot, and Robert Ma-
teescu. Towards robust file system checkers. In
Proceedings of the 16th USENIX Conference on
File and Storage Technologies (FAST), 2018.

[11] Samuel Kalbfleisch, Lukas Werling, and Frank Bel-
losa. Vinter: Automatic non-volatile memory crash
consistency testing for full systems. In Proceedings
of the 2022 USENIX Annual Technical Conference,
2022.

[12] Hayley LeBlanc, Shankara Pailoor, Om Saran
K R E, Isil Dillig, James Bornholt, and Vijay
Chidambaram. Chipmunk: Investigating crash-
consistency in persistent-memory file systems. In
Proceedings of the Eightteenth European Confer-
ence on Computer Systems, 2023.

[13] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh
Kolli, and Samira Khan. PMTest: A Fast and Flexi-
ble Testing Framework for Persistent Memory Pro-
grams. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
2019.

[14] Ashlie Martinez and Vijay Chidambaram. Crash-
Monkey: A Framework to Systematically Test File-
System Crash Consistency. In Proceedings of the
9th USENIX Conference on Hot Topics in Storage
and File Systems (HotStorage), 2017.

[15] Jayashree Mohan, Ashlie Martinez, Soujanya Pon-
napalli, Pandian Raju, and Vijay Chidambaram.
Finding crash-consistency bugs with bounded
black-box crash testing. In 13th {USENIX} Sym-
posium on Operating Systems Design and Imple-
mentation ({OSDI} 18), pages 33–50, 2018.

[16] Helgi Sigurbjarnarson, James Bornholt, Emina Tor-
lak, and Xi Wang. Push-button verification of file
systems via crash refinement. In Proceedings of
12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’16), 2016.

[17] Jian Xu and Steven Swanson. Nova: A log-
structured file system for hybrid volatile/non-
volatile main memories. In Proceedings of 14th
USENIX Conference on File and Storage Technolo-
gies, 2016.

[18] Duo Zhang, Om Rameshwar Gatla, Wei Xu, and
Mai Zheng. A study of persistent memory bugs in
the linux kernel. In Proceedings of the 14th ACM
International Conference on Systems and Storage,
2021.

[19] Jishen Zhao, Onur Mutlu, and Yuan Xie. Firm:
Fair and high-performance memory control for
persistent memory systems. In 47th Annual
IEEE/ACM International Symposium on Microar-
chitecture, 2014.

[20] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng
Qin, Mark Lillibridge, Elizabeth S. Yang, Bill W
Zhao, and Shashank Singh. Torturing Databases
for Fun and Profit. In 11th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 14), pages 449–464, 2014.

2



[21] Bohong Zhu, Youmin Chen, Qing Wang, Youyou
Lu, and Jiwu Shu. Octopus+: An rdma-enabled
distributed persistent memory file system. In ACM
Transactions on Storage, 2021.

3


