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1 Motivation
Persistent memory (PM) technologies [4, 8] can provide
durability with latencies comparable to DRAM. Such
characteristics bridge the gap between traditional mem-
ory and storage, and have inspired many PM-based op-
timizations in both user-level applications [5, 19] and
operating system (OS) kernels [17, 21]. While Intel is
winding down its Optane PM business, it is expected that
vendor-neutral CXL-based PMs will continuously evolve
and trigger new system optimizations [1, 6, 3].

Unfortunately, building correct PM-based systems is
challenging: writes to PM need to be carefully or-
dered and persisted to avoid inconsistent or unrecover-
able states upon crashes, which is non-trivial given the
subtle behavior of modern cache and memory subsys-
tem [14, 15, 7, 16, 10, 20]. To address the challenge,
many testing tools have been proposed [12, 11, 13]. Nev-
ertheless, most of them focus on user-level PM appli-
cations, leaving the OS kernel and the potential depen-
dencies unexplored. In fact, one recent study shows
that there are various PM-related issues at the kernel
level [18], which calls for tool support for full systems.

Notably, Kalbfleisch et al. proposed the VINTER [11]
framework recently which can support full-system test-
ing and have been applied to test multiple kernel-level
PM file systems (e.g., NOVA [17], PMFS [2]). While
promising, our experiments on VINTER exposed a scal-
ability challenge in (at least) three aspects as follows:

First, writes to the target PM file system can easily
overwhelm VINTER. As shown in Table 1, we apply
three small workloads on NOVA which generates three
different sizes of writes (i.e., 256, 256*4, and 256*20
bytes). It took VINTER about 1 hour 45 minutes (‘1h
45m’) to complete the test under the 256*4 workload;
and with 256*20 bytes of write, VINTER cannot finish
within 12 hours. Further analysis shows that among the
three core phases of VINTER (i.e., record, replay, test),
both the replay and test phases are the bottlenecks.

Second, VINTER cannot scale to typical PM appli-

Writes
(Bytes)

Total
Runtime

Runtime for Each Phase
Record Replay Test

256 6m 47s 8s 5m 1m 39s
256*4 1h 45m 16s 55m 42s 48m 30s
256*20 - 21s >12h -

Table 1: Scalability Issue Observed.

PM Software Stack VINTER Ours
Application (e.g., B-tree) × ✓

Library (e.g., PMDK) × ✓
File System (e.g., NOVA) ✓ ✓
Driver (e.g., NVDIMM) ✓ ✓

Table 2: Comparison of PM Layers Supported.

cation scenarios which require important libraries (e.g.,
PMDK) as it only support minimal-built OS. Moreover,
we found that the size of the emulated PM device in
VINTER is too small to be used as the memory pool
for PMDK. Since VINTER relies on the PM device size
internally (i.e., the address range is used for tracing),
extending VINTER to support large PM devices (and
PMDK) would require substantial efforts.

Last but not the least, VINTER has little diagnosis
support to help understand complicated crash issues.

2 Our Approach
We are exploring a new method based on PANDA [9] to
support scalable testing of realistic full PM system stack.
As shown in Table 2, the prototype can support full PM
software stack (e.g., PMDK-based B-tree on PM kernel
modules). We are able to record all PM instructions to
generate crash images under the full system stack. More-
over, we record snapshots and non-determinism logs to
facilitate understanding full-system behavior. In addi-
tion, we are investigating a parallelism mechanism to
generate crash states at different barrier points in parallel,
which is expected to improve the scalability effectively.
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