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Graph-structured data analysis has been extensively used in
many real-world applications. As real-time data is fast becom-
ing the normal [1], many of these graphs become dynamic
and evolve over time. It is then critical to be able to store the
dynamic updates continuously and persistently while, at the
same time, executing iterative graph algorithms in real time.

Figure 1: Workflow of dynamic graph frameworks.
Currently, supporting both persistent graph updates and

real-time graph analytics needs to properly manage two dif-
ferent types of (persistent and volatile) storage devices. As
Fig. 1(a) shows, the persistent devices serve graph updates for
data safety; the volatile devices serve graph analytic for max-
imal performance. Since data is written and read in different
devices, batch updates are needed. Such a divided framework
leads to multiple design issues. First, the batch updates are
expensive and hence should be executed less. However, its
execution frequency also determines how well graph analysis
can catch up with the latest graph changes, creating a design
dilemma for the developers. Second, maintaining data at both
locations wastes the storage and makes smaller ones often the
throttling factor for large graphs.

Recently, a new set of non-volatile or persistent memory de-
vices, such as Intel Optane DC Persistent Memory (PMEM),
emerged [2]. Compared with DRAM, these devices provide
data persistence and higher density. Compared with block-
based persistent devices, they can be directly accessed in bytes
with lower latency and higher IOPS [3–6]. These advanced
features open new design spaces for addressing dynamic
graph analysis problems. As shown in Fig. 1(b), PMEM can
replace both persistent and volatile storage devices to avoid
data synchronization and movement issues.

Our Approach

To design an efficient dynamic graph framework on Persistent
Memory, we propose to leverage recent progress in Packed
Memory Array-based mutable CSR (compressed sparse row)
graph structure [7,8]. PMA-based CSR essentially replaces
its edge array using a gaped array to efficiently support both
graph updates and analytic.

Due to the unique features of PMEM, naive porting PMA-
based CSR to PMEM leads to problematic performance. First,
PMA-based CSR introduces frequent data shifts in a small
range, which could be extremely inefficient on PMEM as its
performance relies on efficiently using the internal 256-byte
write buffers [9]. Second, in-place updates on PMEM are
known to be extremely slow [10]. But most of the metadata
updates to PMA-based CSR are in place. Third, the crash con-
sistency guarantee could be very expensive [11–15] and tricky
to implement for many core PMA-based CSR operations.

Graph Operations Our Solution GraphOne LLAMA

Dynamic Insertion 1167.64 2985.07 1348.51
PageRank 545.92 775.83 712.73

Table 1: Performance of different frameworks on PMEM (seconds).

We propose three key approaches to address these issues.
First, we introduce per-segment persistent logs to reduce un-
necessary data shifts. Second, we introduce per-thread undo
logs to guarantee crash consistency efficiently. Third, we de-
sign new data placement schema to maximally avoid the in-
place data updates on PMEM. Our initial results are promising
compared to existing state-of-the-art persistent graph process-
ing systems running on PMEM, such as GraphOne [16] and
LLAMA [17]. Table 1 lists the dynamic graph insert time and
PageRank runtime on Twitter [18] graph1. Our proposed solu-
tion can achieve up to 2.56× better performance in dynamic
graph insertion and reduce ∼ 30% of PageRank time.

1Experiment setup: 2nd Gen. Intel Xeon Scalable (Gold 6254 @ 3.10G),
6 DRAM/PMEM DIMMS, 192GB DRAM, 768GB PMEM, Ubuntu 20.04.
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