
ClusterLog: Clustering Logs for Effective
Log-based Anomaly Detection

Chris Egersdoerfer, Di Zhang
Computer Science Department

University of North Carolina at Charlotte
Charlotte, NC, United States

cegersdo@uncc.edu, dzhang16@uncc.edu

Dong Dai
Computer Science Department

University of North Carolina at Charlotte
Charlotte, NC, United States

ddai@uncc.edu

Abstract—With the increasing prevalence of scalable file
systems in the context of High Performance Computing
(HPC), the importance of accurate anomaly detection on
runtime logs is increasing. But as it currently stands, many
state-of-the-art methods for log-based anomaly detection,
such as DeepLog, have encountered numerous challenges
when applied to logs from many parallel file systems (PF-
Ses), often due to their irregularity and ambiguity in time-
based log sequences. To circumvent these problems, this
study proposes ClusterLog, a log pre-processing method
that clusters the temporal sequence of log keys based on
their semantic similarity. By grouping semantically and
sentimentally similar logs, this approach aims to represent
log sequences with the smallest amount of unique log
keys, intending to improve the ability for a downstream
sequence-based model to effectively learn the log patterns.
The preliminary results of ClusterLog indicate not only its
effectiveness in reducing the granularity of log sequences
without the loss of important sequence information but
also its generalizability to different file systems’ logs.

I. INTRODUCTION

In light of growing datasets, increasing problem
complexity, and more compute intensive algorithms,
it is no question that large-scale computing systems,
such as Cloud or High-Performance Computing
(HPC), are a growing area of interest. In these
systems, distributed storage frameworks are the
critical foundation to providing global data access,
and their health is therefore critical to the function
of the entire system. However, due to increasing
scale and complexity, distributed storage systems
are subject to various bugs, failures, and anomalies
in production, which lead to data loss, service
outages and degradation of quality of service [15],
[9], [6]. It is thereby critical to detect malfunctions

accurately and in a timely manner, so that system
operators can promptly pinpoint issues and resolve
them immediately to mitigate losses.

It has been proven that runtime logs, which
record detailed runtime information about storage
systems during operation, are a valuable information
source to detect potential anomalies in distributed
storage systems. These runtime logs are generated
by log statements written in the source code (using
simple printf function or logging libraries such
as Log4j [4]). These logs record important inter-
nal states of distributed storage systems, such as
key variable values, return values, and performance
statistics, all of which can be useful to reveal system
anomalies. As a result, an extensive amount of
research on log-based anomaly detection has been
done recently [8], [26], [16], [25], [34], [10], [7],
[19], [12], [22], [32], [33], [21], [20], [9].

The main theme of modern Log-based anomaly
detection solutions is to apply machine learning, es-
pecially deep learning methods, onto log sequences
to detect anomalies. The common process of doing
so is for logs to be parsed and processed first, then
their normal sequence to be learned by sequence-
based pattern detection models such as LSTM [18].
Having learned what normal and abnormal log se-
quences look like, these algorithms are then shown
runtime logs and are tasked to classify them accu-
rately. Take one of the most representative works,
DeepLog [12], as an example: during training, it
first parses the runtime logs into templates and
represents each of these templates using a single
integer. Through this process, a sequence of logs
becomes a sequence of integral identifiers, which



will be learned using an LSTM model. During
runtime, the anomalies are defined by whether or
not the actual next log identifier is within the set
of identifiers which the LSTM model predicts. In
another recent study, NeuraLog [18], the runtime
logs are identified as a vector instead of an integer
to contain more semantic information. Still, these
sequences of embedded vectors will are fed into a
DL model to learn the normal/abnormal sequences.

Although these sequence-based log anomaly de-
tection solutions work well for many storage sys-
tems such as HDFS [2], they have one key is-
sue: they rely heavily on the quality of the log
sequences in the training data. The sequence of
logs must be both accurate and representative of
the log system’s logic. Such sequences of logs are
often expensive to obtain in the real-world. For
instance, the HDFS logs used in existing studies
were pre-processed by aggregating logs with the
same data block ID into a sequence, regardless of
how far these log entries are from each other in
the runtime. Unfortunately, such pre-processing is
not always possible. In fact, many parallel storage
systems, such as Lustre [5] and BeeGFS [3], do
not have any common identifier (ID) in log entries
to denote their relevance. Missing such global IDs
makes it difficult to identify the matching events or
to build log sequences accurately, resulting in only
raw time-based log sequences available [35].

In addition, the raw log sequences generated from
a distributed environment are quite ambiguous. One
source of ambiguity is the clock skew in distributed
systems, as logs generated concurrently across mul-
tiple nodes are merged into a single file where their
order is not always equivalent to the order of time
in which they occurred. Secondly, interleaved con-
current threads present a further, and more complex
problem. As different nodes run separate execution
threads concurrently, the unrelated processes are
often logged in random, interleaving order. Directly
learning from these often noisy sequences of run-
time logs, can be problematic, and require a much
larger labeled dataset and longer training time.

To address these issues, in this study we propose
ClusterLog, a log pre-processing method which
clusters individual runtime logs based on their sim-
ilarity to effectively reduce the ambiguity of log
sequences and improve the accuracy of downstream

sequence-based learning. The intuition behind Clus-
terLog is driven by the idea that grouping similar
runtime logs together will result in less random
variation within the log sequence due to a lesser
amount of unique key identifiers. In addition, group-
ing logs based on their similarity can still retain the
vital sequence information between different types
of high-level file system operations. For example,
Lustre log sequences contain many sequences of
logs where actions are all very similar, but because
of the lack of block ID, they are highly irregular
in time sequence. Grouping some of these similar
actions is intended to eliminate a large portion of
this irregularity, providing a cleaner sequence to be
learned. Further, the robust and generalizable nature
of this approach allows it to be applied to numerous
types of file system logs and on limited amounts
of available training data, both of which are not
adequately captured by previous approaches.

The rest of this paper is organized as follows. In
Section II, we present the design and implementa-
tion of ClusterLog. In Section III, we discuss the
evaluation setup and results. Finally, in sections IV
and V, we discuss related work and lay out our
future work, respectively.

II. DESIGN AND IMPLEMENTATION

The implementation of ClusterLog can be effec-
tively broken into four parts. The first is rudimentary
preprocessing, where the log content is extracted
from the log files, resulting in only the natural lan-
guage sequence of each log which can be matched
throughout the log file to create a set of unique
log keys. From here, the preprocessed log keys are
fed into a pre-trained semantic similarity model to
produce unique embeddings for each unique log key.
Simultaneously (or in sequence) to the semantic
similarity embedding step, the preprocessed log
keys are fed into a pre-trained sentiment prediction
model to result in a 0 or 1 prediction of each log’s
sentiment. The output of the semantic similarity em-
bedding model and the sentiment prediction model
are concatenated at this point and serve as the entire
latent representation of each log key. Following the
concatenation, the embeddings are fit to a clustering
algorithm where the resulting cluster labels are
used to replace the original sequence of log keys.
Finally, the sequence of these cluster labels are fed



into the downstream sequential analysis algorithm.
In our current implementation, we use DeepLog’s
sequence-learning part as the downstream algo-
rithm. It is a two-layer LSTM network which is
used to predict a probability distribution of the next
log key given a specified window of previous logs.
If the next log key is within the top candidates of
this distribution, the sequence is considered normal,
otherwise it is labeled as anomalous.

A. Preprocessing

The first step of the ClusterLog implementation is
rudimentary preprocessing of the raw log files. The
goal of this step is to remove any excess characters
and information from each individual log key, to
result in a stripped key containing only the natural
language sequence of the log which can be extracted
as a unique log key and matched with many other
logs in the original file. While it is ideal to reduce
the log to its most generic natural language form to
result in the smallest possible amount of unique log
keys, an approximation of this will likely suffice
if the former is too difficult to achieve. This is
sufficient as the semantic embedding model will
almost identically embed keys which are of the
same logging template but are not a perfect match,
meaning they will be clustered together even at
the lowest of distance thresholds. As preprocessing
can occasionally be very tedious, approximation at
this step is highly valuable in regards to time and
effort required to set up this approach compared
to others. Depending on the file system which is
being analyzed, the exact preprocessing steps may
vary, but with the same goal in mind, preprocessing
generally consists of extracting the log content,
removing unique identifiers such as time stamps
or Block IDs, removing unnecessary characters or
character patterns, and unabbreviating words.

B. Semantic Embedding

Once the logs have been preprocessed, the natural
language sequence of each log is fed into a pre-
trained semantic embedding model. Though a num-
ber of applicable models do exist, the most accurate
embeddings were achieved using the all-mpnet-
base-v2 [1] model which itself was pre-trained on
the original mpnet-base [28] model, published in
2020, and further fine-tuned on over 2.1 Billion

sentence pairs to optimize the model for semantic
similarity. Though a further fine-tuning step specific
to the semantic similarity among log keys would
likely improve the semantic embedding quality even
further, there is no known labeled dataset for this
task, and creating labeled sentence pair data for
semantic similarity is an arduous task. The output
of this embedding model is a latent representation
of the natural language contained within the log
key of shape (768, 1) where the distance in the
latent space between semantically similar sentences
is close together, and those which are semantically
diverse are far apart.

C. Sentiment Prediction

While the semantic embedding model is valuable
in that it creates a latent space where semantically
(language-wise) similar sentences are close together
and diverse ones are far apart, which can be used
to cluster log keys reporting on the same or sim-
ilar processes, these embeddings sometimes miss
a valuable feature of natural language which is
often included in logs. That feature is sentiment.
A simple example of how classifying sentiment
can add value to a semantic embedding is evident
in the following two HDFS logs: Exception in
receiveBlock for block and Receiving empty
packet for block. These two logs are similar
in terms of semantics using our pre-trained model
because of their shared key words. However, the
first one indicates an anomaly while the second does
not. This presents a challenge when clustering solely
based on semantic embedding.

To work around this kind of issue, we follow the
idea of our recent SentiLog work which leverages
the sentiment of file system logs [35]. Specifically,
we reuse the pre-trained sentiment classification
model from SentiLog on a set of neutral/positive and
negative log keys, and concatenate the rounded (0
or 1) output of this model to the overall embedding
of the log. Adding a sentiment dimension properly
helps separate logs which may be semantically
similar but opposite with regard to sentiment. Ulti-
mately, the semantic embedding, including the con-
catenated sentiment prediction, serves as a highly
accurate latent representation of the log key which
can confidently be used to cluster logs which are
truly similar.



D. Clustering

The ultimate goal of ClusterLog is to cluster the
runtime logs into similar groups, so that we can
use the same group ID to represent similar logs to
reduce the complexity of the log sequences.

Following the semantic embedding and sentiment
prediction steps, and their concatenation, the entire
embedding is fed into a clustering algorithm in order
to group the keys. However, there are a variety of
problems associated with common clustering algo-
rithms such as K-Means clustering when applied to
this task. Initially, we ruled out K-Means primarily
because of the need to specify the amount of cen-
troids, which presents a major challenge as it makes
the approach highly dependent upon the training
data being fully representative of the logs during de-
ployment as new, unseen, log keys would be forced
to be grouped with an existing cluster, regardless of
actual semantic and sentiment similarity. To add to
this, finding an optimal number of centroids in K-
Means based purely on the embedding data presents
a challenge in and of itself as classic methods
like the Elbow method are inconclusive on out our
datasets.

In response to this, other clustering methodolo-
gies which create an arbitrary amount of clusters
dependent on a specific distance threshold between
clusters or points seem to be more suited. However,
in practice, these too can be difficult to assess,
as finding the correct hyper-parameters (i.e. the
distance) for the given dataset is not always clear.
But through extensive exploration, Density-Based
Spatial Clustering of Applications with Noise (DB-
SCAN) [11] gave the most promising results when
applied to a variety of file systems’ logs. DBSCAN
is simply described as a clustering algorithm which
defines data points as core points, border points, and
noise points based on Epsilon, a distance threshold,
and minimum samples, both of which must be
manually set.

The reason for choosing DBSCAN was primarily
driven by the fact that it gave a more consistent,
and often more valuable, insight on how to set
the threshold hyper-parameter for good results. In
contrast to KMeans and other classic algorithms,
the epsilon parameter used by DBSCAN can be
used to locate density gaps in the data as well as

Fig. 1: Number of generated clusters on Lustre logs using
different DBSCAN threshold.

Fig. 2: Number of generated clusters on HDFS logs using
different DBSCAN threshold.

the amount of change required to overcome these
gaps. Additionally, Epsilon is highly intuitive to
tune as it can be easily understood as modifying the
radius around each point which is used to search for
neighboring points. This means that when applied
to any system, some analysis of how far apart
embeddings of similar entries are can be used to
gain meaningful insight as to what a good Epsilon
value may be. As shown in Figure 1 and 2, when
plotting epsilon from 0.4 to 1 against the amount
of clusters created by DBSCAN for HDFS and
Lustre, respectively, both graphs indicate noticeable
ledges where multiple steps of epsilon do not result
in any change in the amount of clusters found by
DBSCAN. The thresholds at or around the longest



of these ledges, provide a good baseline for setting
the epsilon hyperparameter. Using a very minimal
training and testing set allows us to verify such
hyperparameter values.

With regard to the second hyperparameter which
was mentioned, minimum samples, it was set to a
constant value of 1. By setting minimum samples to
1, DBSCAN does not predict any of the data points
as noise, but rather, any outliers simply become a
unique cluster of just themselves. This was done for
the simple reason that labeling all outlier points as -
1 to indicate noise effectively creates a meaningless
cluster of completely unrelated log keys which are
only grouped because they are too far from others.
This severely impacts the ability for the sequential
analysis algorithm to properly predict anomalies.

E. Sequential Analysis

The final part of ClusterLog is the downstream
sequential analysis algorithm. In the current imple-
mentation, we focus on comparing with a state-
of-the-art log-based anomaly detection method,
DeepLog. Hence, we use DeepLog’s sequence-
learning part as the downstream algorithm. It is
based on a standard 2 layer LSTM architecture
which uses ten sequential log keys as input to
predict the probability distribution of the next log
key. From this probability distribution, log keys
within the top 9 are treated as part of a normal
sequence, while other log keys in this distribution
are treated as anomalies.

III. EVALUATION

To evaluate the performance of ClusterLog, we
conducted evaluations on two vastly different dis-
tributed storage systems: Apache HDFS and Lus-
tre. The combination of these different evaluations
demonstrates the generality of ClusterLog on both
noisy Lustre logs and more structured HDFS logs.
We will show that our approach will outperform
existing solutions in both areas through granularity
reduction.

A. Lustre

1) Dataset: Due to the lack of publicly available
anomaly detection datasets for Parallel File Sys-
tems, the dataset utilized in this paper was gener-
ated and labeled via a process of fault injection.

Specifically, the fault injection was simulated using
PFault [6], an open-source fault injection repository
for Parallel File Systems. The labeling of this data
was done by treating data before fault injection as
normal and having domain experts manually label
the data following a fault injection to ensure its
relevance with the injected anomaly. This process
resulted in a dataset containing 150,473 normal logs
and 7,401 abnormal, anomalous logs. Additionally,
the total number of unique log key templates in this
dataset equated to 73.

2) Training and Testing: The training setup for
evaluating ClusterLog against the Lustre dataset can
be simply described as learning a portion of the
normal sequence of logs (without anomalies) to
show the sequence model how normal logs look,
and then using that knowledge to see if anomalies
can be detected in a sequence of logs containing
both normal and anomalous logs. Both the train and
test set are created by forming a sliding window
of size 10 among the log key sequence, where the
goal is to create a probability distribution for the
next log key. If the next log key is not within the
top candidates of the probability distribution it is
counted as an anomaly while testing. A distinction
to this setup is made when comparing it with Neu-
ralLog as NeuralLog trains on a set of both normal
and anomalous logs. Additionally, NeuralLog does
not predict the next log in a sequence, but rather
classifies a given sequence as anomalous or not.
Based on these approaches, Accuracy, Precision,
Recall, and F-measure are calculated.

While most of the training and testing analysis
was done using 25 percent of the total normal
logs, in order to test and compare the limits of
generalizability, a further test was carried out in
which a smaller amount of the entire dataset was
used to train the sequence model. This test was
carried out by using just 1 percent of the entire
Lustre training set. This split resulted in 1,500 total
samples.

B. HDFS

1) Dataset: Among the majority of recent
anomaly detection works, the same HDFS dataset is
most commonly referenced in their respective evalu-
ations. This makes it a good benchmark comparison
for new results. In contrast to logs contained in the



Lustre log dataset, HDFS logs contain a specific
block ID in addition to their log content which al-
lows them to be grouped by session. Anomalies are
labeled on a per-session basis rather than a per-log
basis for this dataset. The labeling itself was carried
out by domain experts who discovered and labeled
sessions containing one of 11 types of anomalies.
This resulted in a dataset with 11,197,954 messages,
grouped into 575,139 sessions, of which 16,808
sessions were anomalous [32].

2) Training and Testing: During training, the se-
quence model utilizes only the normal log sessions,
and each key in each session is represented by
the corresponding cluster calculated by DBSCAN.
Much like what was done with Lustre, the sequence
model learns normal behavior by using a window
of 10 cluster IDs. During testing, the trained se-
quence model is run against both the normal and
the anomalous log sessions. For each session, the
sequence model utilizes the window of 10 keys to
predicting a probability distribution for the next ID
in the session. As opposed to Lustre, if the model
predicts an anomaly, the session is labeled as an
anomaly, instead of just the log key. If no anomalies
are predicted within a given session, the session
itself is predicted as being normal. This setup varied
slightly in the case of Neuralog, as it did for Lustre,
as Neuralog views each entire block and classifies
the block as anomalous or normal.

C. Results Analysis

1) ClusterLog performance analysis with differ-
ent settings and hyper-parameters: The first set of
results, shown in Figure 3, represents the detailed
performance of ClusterLog: 1) using numerous val-
ues for DBSCAN’s epsilon parameter; 2) using
sentiment dimension or not; 3) using variable or
fixed number of candidates.

The leftmost graph in both of these rows shows
the results of ClusterLog without the concatena-
tion of the sentiment prediction to the semantic
embedding. The middle graph shows ClusterLog’s
performance with the concatenation of the sentiment
prediction to the semantic embedding. The right-
most graph shows ClusterLog’s performance with
the concatenation of the sentiment prediction as well
as using a variable number of candidates instead of
a fixed number in the sequence model. Specifically,

when the number of clusters descends below 27, the
number of candidates used in the sequence model
is set to the floor division of the number of clusters
by 3 (eg. for 20 clusters, candidates would be set
to 6). This feature was added to ClusterLog based
on the intuition that when the amount of clusters
becomes very low, using a relatively large amount
of candidates may force the sequence model to
consider a key of very low calculated probability to
be normal, increasing the amount of false negatives.

From these results, we can clearly observe not
only how ClusterLog can achieve its best results by
reducing a large amount of noise with high clus-
tering thresholds, but also that the concatenation of
sentiment as well as the adaptation of candidates to
account for a low cluster count add to ClusterLog’s
ability to produce strong and consistent results.

2) Overall Comparison with DeepLog and Neu-
ralLog: In order to provide a reference among state-
of-the-art anomaly detection solutions, we com-
pared ClusterLog’s results with the results from
DeepLog using the most similar training and testing
setup possible. For Lustre, a sliding window of size
10 was used to predict a probability distribution
among the 73 unique log key templates where a
succeeding log key within the top 9 of predictions
was considered normal and anything else was con-
sidered anomalous. For HDFS, the setup was the
same, but because HDFS logs can be grouped into
sessions using their block IDs, each session was
individually used as a sequence, and the prediction
of an anomaly within a session classified the entire
session as anomalous.

The results shown in Figure 4 and 5 for HDFS
and Lustre respectively, show ClusterLog’s im-
provement upon previous SOTA results. In the
case of HDFS, while DeepLog maintains a slightly
higher Precision, ClusterLog boasts a more sig-
nificant improvement in Recall, primarily because
clustering the most similar logs on the HDFS dataset
allows ClusterLog to more easily detect what is truly
a normal sequence amidst some noise. NeuralLog
also has high precision and recall, but both of these
values seem to be slightly outshined by ClusterLog
and DeepLog on this train and test split. Overall,
ClusterLog’s very high precision and high recall
boost its combined F1 score slightly higher than
Deeplog’s and NeuralLog’s. However, due to the



Fig. 3: number of clusters (right y-axis) and F-score of the prediction (left y-axis) of ClusterLog under different parameter
settings for Lustre (top) and HDFS (bottom). Adding sentiment dimension (the middle figure) shows a clear improvement in
F1 scores in a larger range of DBSCAN thresholds. Also, variable number of candidates further improves the F1 scores.

Fig. 4: Performance comparison of ClusterLog, DeepLog,
and NeuralLog on HDFS dataset

ability to group HDFS logs into sessions by their
block ID, the nature of these sessions is already
fairly low in noise. This means the application of

Fig. 5: Performance comparison of ClusterLog, DeepLog and
Neuralog on Lustre dataset

ClusterLog will still be effective, as is shown, but
the difference in performance will likely not be as
large as it may be for more noisy systems. Because



Lustre is a good example of one such noisy system,
the comparison of results on this dataset provides
evidence of this larger performance gap.

As shown by Figure 5, the disparity in precision
between DeepLog and ClusterLog is very large
while it seems both approaches have a very high
recall. This is because DeepLog is not able to
learn the more noisy sequence effectively, and as
a result classifies the vast majority of normal and
abnormal logs as anomalous. NeuralLog does a
much better job of holding up against this dataset as
its vector representations for logs are more robust
than DeepLog’s log indexes for noisy data, but as
shown later, it takes much more labeled data to
extract good performance from NeuralLog due to a
very large set of trainable weights. ClusterLog was
able to learn the sequence and accurately discern
between normal and abnormal logs. In total, the
results on both of these datasets in comparison to
modern approaches verify ClusterLog’s ability to
generalize across different file systems and achieve
strong results.

Fig. 6: Performance comparison between ClusterLog,
DeepLog, and NeuralLog using smaller training data. Cluster-
Log is much more stable even with less training data, showing
the effectiveness of clustering logs.

3) The impact of training dataset size using
ClusterLog: The final comparison for ClusterLog
represents the impact of using a small training set on
the ability of ClusterLog, DeepLog and NeuralLog
to accurately predict anomalies on the more noisy
Lustre dataset. This comparison was done on the
Lustre dataset because the difference in the number

of clusters used by ClusterLog and DeepLog on
this dataset is large, so the impact of changing the
training set size should be emphasized by this fact.
As shown in Figure 6, the prediction results for
DeepLog and NeuralLog are massively impacted as
the proportion of the training set used shrinks. The
alternative approaches’ low performance on such a
small dataset can be explained by the fact that the
normal interactions between a higher granularity of
keys are unlikely to be explained by such a small
dataset. In contrast, the figure shows that ClusterLog
can maintain the same level of results even having
trained on just 1 percent of the training set (1504
logs). By reducing the number of keys through
clustering, ClusterLog is much more likely to not
only see all of the keys enough times but also learn
the normal interactions between them, ultimately
leading to much stronger results on small datasets.

IV. RELATED WORKS

There is a large catalogue of both preprocessing
and anomaly detection approaches for file system
logs in existence today [31], [30], [24], [13], [29],
[27], [23], [37], [8], [26], [16], [25], [34], [10],
[7], [19], [12], [22], [32], [33], [21], [20], [9].
Among preprocessing techniques, the primary ap-
proaches include frequent pattern mining, cluster-
ing, and heuristic methods. Frequent pattern mining
approaches extract frequently occurring patterns,
with the ultimate goal of grouping the logs which
have the highest degree of similarity [30], [31],
[24]. The clustering-based preprocessing techniques
employ clustering algorithms to group similar logs.
The individual approaches in this category generally
differ in their approach towards measuring similar-
ity, as some may employ weighted edit differences
on log pairs [13], while others may fit a given set of
raw logs to a predefined set of events [29]. The final
category of preproccessing approaches is heuristic-
based approaches. Among these, Drain [17] is the
most popular and relies on a fixed depth tree to
extract log templates. ClusterLog belongs to the
clustering-based method with new designs using
semantic and sentimental features of logs.

Anomaly detection approaches can be categorized
into non-machine learning and machine learning
approaches. Of the more successful non-machine
learning approaches, the rule-based approaches are



well seen, where domain experts formulate a set
of rules which can be used to classify logs as
anomalies [8], [26], [16], [25], [10]. Among ma-
chine learning techniques, pattern-seeking [32], [33]
and invariant mining [21] based algorithms have
proven effective on a variety of file system logs,
but their results do not hold up on the irregularity of
logs which do not include session identifiers [35].
Additionally, These approaches do not hold up to
more recent deep learning-based solutions, which
learn sequences of logs using deep neural networks.
The first approach, LogAnomaly[22], borrows from
NLP by proposing a log key embedding technique
which vectorizes log keys based on synonyms and
antonyms and calculates similarity between vector
embeddings to predict anomalies. An additional
approach in this domain, LogBERT[14], utilizes the
Bidirectional Encoders Represented by Transform-
ers model which has provided STOA Results in
multiple domains. In this approach, it is not the next
log key that is predicted, but rather a given sequence
that is masked and then classified as normal or
abnormal. More recently, similar attention-based
approaches have shown very strong results across
a variety of Distributed File Systems. Among these
approaches, LogRobust[36] and Nueralog[18] show
the most promising results. While the encapsulated
models are slightly different, both of these ap-
proaches utilize attention mechanisms to classify a
sequence of logs represented by content embedding
vectors. These approaches lend well to unseen logs.
However, training accurate classification on such
high dimensional embedding input requires a large
amount of labeled training data. Additionally, the
lack of grouping characteristics such as sequence
identifiers in some logs and the resultant irregu-
larity makes it difficult for these solutions to be
effectively applied. ClusterLog is proposed to better
work with these advanced models to achieve better
performance and higher training efficiency.

V. CONCLUSION AND FUTURE WORK

In this work, through ClusterLog, we have shown
that granularity reduction in log key sequences is
a viable approach to improve log anomaly detec-
tion in general. A key area where this method of
anomaly detection outperforms previous approaches
is in non-session parallel file system logs, which are

highly irregular and noisy. Additionally, this work
shows that granularity reduction in log sequences
may allow users to reduce their effort by allowing
for more lenient pre-processing, as well as smaller
labeled datasets. This all is because of the effec-
tive reduction of noise and retention of important
sequence information achieved by a good clustered
representation of the file system log keys.

In the future, there are two primary areas in
this work which are intended to be improved and
many others which can be explored. To begin, due
to ClusterLog’s high dependence on the accuracy
of sentence and sentiment embedding models, im-
provements in both of these areas could prove to
be of value. The first direction of improvement
is further exploration of clustering techniques to
find an even more clear and easy-to-apply way of
selecting the right clustering hyperparameters. The
second direction is to further provide evidence for
CLusterLog’s generalizability by applying it to a
larger scope of log systems. In addition to more
parallel and distributed file systems, ClusterLog
should prove its viability against other systems such
as Kubernetes.

REFERENCES

[1] all-mpnet-base-v2. https://huggingface.co/sentence-
transformers/all-mpnet-base-v2, Accessed: 08/2022.

[2] Apache HDFS. https://hadoop.apache.org, Accessed: 08/2022.
[3] BeeGFS. http://beegfs.io, Accessed: 08/2022.
[4] Log4J. https://logging.apache.org/log4j/2.x/, Accessed:

08/2022.
[5] Lustre. https://www.lustre.org, Accessed: 08/2022.
[6] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai,

Vidya Eswarappa, Yan Mu, and Yong Chen. Pfault: A general
framework for analyzing the reliability of high-performance
parallel file systems. ICS ’18, page 1–11, New York, NY, USA,
2018. Association for Computing Machinery.

[7] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan,
and Eric Brewer. Failure diagnosis using decision trees.
In International Conference on Autonomic Computing, 2004.
Proceedings., pages 36–43. IEEE, 2004.

[8] Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia.
Event logs for the analysis of software failures: A rule-
based approach. IEEE Transactions on Software Engineering,
39(6):806–821, 2012.

[9] Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and
Scott Baden. Doomsday: Predicting which node will fail when
on supercomputers. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis,
pages 108–121. IEEE, 2018.

[10] Biplob Debnath, Mohiuddin Solaimani, Muhammad Ali Gulzar
Gulzar, Nipun Arora, Cristian Lumezanu, Jianwu Xu, Bo Zong,
Hui Zhang, Guofei Jiang, and Latifur Khan. Loglens: A real-
time log analysis system. In 2018 IEEE 38th International



Conference on Distributed Computing Systems (ICDCS), pages
1052–1062. IEEE, 2018.

[11] Dingsheng Deng. Dbscan clustering algorithm based on density.
In 2020 7th International Forum on Electrical Engineering and
Automation (IFEEA), pages 949–953, 2020.

[12] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, pages 1285–1298, 2017.

[13] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Ex-
ecution Anomaly Detection in Distributed Systems through
Unstructured Log Analysis. In 2009 Ninth IEEE International
Conference on Data Mining, pages 149–158, Miami Beach, FL,
USA, December 2009. IEEE.

[14] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log
anomaly detection via bert, 2021.

[15] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh
Tiwari. Failures in large scale systems: long-term measurement,
analysis, and implications. In Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12, 2017.

[16] Stephen E Hansen and E Todd Atkins. Automated system
monitoring and notification with swatch. In LISA, volume 93,
pages 145–152, 1993.

[17] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu.
Drain: An Online Log Parsing Approach with Fixed Depth
Tree. In 2017 IEEE International Conference on Web Services
(ICWS), pages 33–40, Honolulu, HI, USA, June 2017. IEEE.

[18] Van-Hoang Le and Hongyu Zhang. Log-based anomaly detec-
tion without log parsing. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages
492–504. IEEE, 2021.

[19] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra
Sahoo. Failure prediction in ibm bluegene/l event logs. In
Seventh IEEE International Conference on Data Mining (ICDM
2007), pages 583–588. IEEE, 2007.

[20] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and
Xuewei Chen. Log clustering based problem identification for
online service systems. In 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C),
pages 102–111. IEEE, 2016.

[21] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang
Li. Mining invariants from console logs for system problem
detection. In USENIX Annual Technical Conference, pages 1–
14, 2010.

[22] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei,
Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun,
et al. Loganomaly: Unsupervised detection of sequential and
quantitative anomalies in unstructured logs. In IJCAI, volume 7,
pages 4739–4745, 2019.

[23] Masayoshi Mizutani. Incremental Mining of System Log
Format. In 2013 IEEE International Conference on Services
Computing, pages 595–602, Santa Clara, CA, USA, June 2013.
IEEE.

[24] Meiyappan Nagappan and Mladen A. Vouk. Abstracting log
lines to log event types for mining software system logs.
In 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), pages 114–117, Cape Town, South
Africa, May 2010. IEEE.

[25] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and
Sumayah Alrwais. Detection of early-stage enterprise infec-
tion by mining large-scale log data. In 2015 45th Annual

IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 45–56. IEEE, 2015.

[26] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Man-
ish Kumar. Perfaugur: Robust diagnostics for performance
anomalies in cloud services. In 2015 IEEE 31st International
Conference on Data Engineering, pages 1167–1178. IEEE,
2015.

[27] Keiichi Shima. Length Matters: Clustering System Log
Messages using Length of Words, November 2016.
arXiv:1611.03213 [cs].

[28] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan
Liu. Mpnet: Masked and permuted pre-training for language
understanding, 2020.

[29] Liang Tang, Tao Li, and Chang-Shing Perng. LogSig: gen-
erating system events from raw textual logs. In Proceedings
of the 20th ACM international conference on Information
and knowledge management - CIKM ’11, page 785, Glasgow,
Scotland, UK, 2011. ACM Press.

[30] R. Vaarandi. A data clustering algorithm for mining patterns
from event logs. In Proceedings of the 3rd IEEE Workshop
on IP Operations & Management (IPOM 2003) (IEEE Cat.
No.03EX764), pages 119–126, Kansas City, MO, USA, 2003.
IEEE.

[31] Risto Vaarandi and Mauno Pihelgas. LogCluster - A data
clustering and pattern mining algorithm for event logs. In
2015 11th International Conference on Network and Service
Management (CNSM), pages 1–7, Barcelona, Spain, November
2015. IEEE.

[32] Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael Jordan. Online system problem detection by mining
patterns of console logs. In 2009 Ninth IEEE International
Conference on Data Mining, pages 588–597. IEEE, 2009.

[33] Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael I Jordan. Detecting large-scale system problems by
mining console logs. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 117–132,
2009.

[34] Kenji Yamanishi and Yuko Maruyama. Dynamic syslog mining
for network failure monitoring. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discov-
ery in data mining, pages 499–508, 2005.

[35] Di Zhang, Dong Dai, Runzhou Han, and Mai Zheng. Sentilog:
Anomaly detecting on parallel file systems via log-based sen-
timent analysis. In Proceedings of the 13th ACM Workshop on
Hot Topics in Storage and File Systems, pages 86–93, 2021.

[36] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang,
Yingnong Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng,
Ze Li, et al. Robust log-based anomaly detection on unstable
log data. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 807–817,
2019.

[37] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin
Zheng, and Michael R. Lyu. Tools and Benchmarks for
Automated Log Parsing, January 2019. arXiv:1811.03509 [cs].


