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ABSTRACT
Dynamic graphs, featuring continuously updated vertices and edges,
have grown in importance for numerous real-world applications.
To accommodate this, graph frameworks, particularly their internal
data structures, must support both persistent graph updates and
rapid graph analysis simultaneously, leading to complex designs
to orchestrate ‘fast but volatile’ and ‘persistent but slow’ storage
devices. Emerging persistent memory technologies, such as Optane
DCPMM, offer a promising alternative to simplify the designs by
providing data persistence, low latency, and high IOPS together. In
light of this, we propose DGAP, a framework for efficient dynamic
graph analysis on persistent memory. Unlike traditional dynamic
graph frameworks, which combine multiple graph data structures
(e.g., edge list or adjacency list) to achieve the required perfor-
mance, DGAP utilizes a single mutable Compressed Sparse Row
(CSR) graph structure with new designs for persistent memory
to construct the framework. Specifically, DGAP introduces a per-
section edge log to reduce write amplification on persistent memory;
a per-thread undo log to enable high-performance, crash-consistent
rebalancing operations; and a data placement schema to minimize
in-place updates on persistent memory. Our extensive evaluation
results demonstrate that DGAP can achieve up to 3.2× better graph
update performance and up to 3.77× better graph analysis perfor-
mance compared to state-of-the-art dynamic graph frameworks for
persistent memory, such as XPGraph, LLAMA, and GraphOne.
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1 INTRODUCTION
The ability to ingest new graph data continuously and analyze the
latest graphs efficiently is crucial for many real-world applications
today. For instance, cellular network operators need to address
traffic hotspots in their networks as they are generated and identi-
fied [27]. A dynamic graph framework that can both persistently
store new graph updates and perform complex graph analysis on
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the latest graph is essential for supporting such applications. How-
ever, constructing such a framework is fundamentally challenging.
Existing storage devices like SSDs, hard disks, or DRAM either
lack persistence (as in volatile DRAM) or offer low performance
on graph analysis (like SSDs and hard disks). To handle both op-
erations, graph frameworks must manage various storage devices,
design unique data structures for each, and find a balance between
them, leading to intricate systems. For example, GraphOne per-
sists the graphs updates on SSD in Edge List (EL), conducts graph
analysis on DRAM using Adjacency List (AL), and continuously
synchronizes data between the two [33].

Recently, a new set of non-volatile or persistent memory devices
(PMs) have emerged, such as Intel Optane DC Persistent Mem-
ory [46]. These devices can be accessed in bytes via the memory
bus with data persistence guarantees. Compared to DRAM, PMs of-
fer data persistence and greater density (e.g., Optane’s 512GB/dimm
vs. DRAM’s 64GB/dimm). Compared to block-based devices, PMs
allow byte-level access using load and store instructions with
significantly lower latency (e.g., ∼300 ns vs. ∼100 ms) and higher
IOPS (e.g., ∼10M vs. ∼500K for random writes) [51, 52, 61, 72].
These characteristics suggest a promising alternative for building
dynamic graph frameworks: employ PMs to serve both graph up-
dates and graph analysis for persistence, speed, and capacity. This
approach further avoids the cost of data movements and reduces
the complexity of coordinating multiple data structures on different
storage devices. Although Intel has discontinued Optane PMs due
to business reasons, millions of these devices remain available, and
various new non-volatile memory solutions continue to emerge.
We contend that designing high-performance storage systems on
persistent memory devices remains both economically practical
and beneficial, as evidenced by recent studies [60, 64].

However, directly porting existing graph frameworks to PMs
can be sub-optimal. Existing dynamic graph frameworks, such
as LLAMA [42] or GraphOne [33], utilize block I/O interfaces,
whose software overheads are not acceptable for byte-addressable
PMs [68]. The data structures are not tailored for PMs either, lead-
ing to potential performance issues [25, 26]. Moreover, although
PMs are persistent devices, writing data persistently is complicated
due to the existence of volatile CPU caches. Extra flushing and
fencing operations, though necessary, become costly without the
right optimizations [25, 26]. Unexpected crashes further necessi-
tates expensive transactions to avoid partial writes, significantly
impacting the performance [21, 67].

On the other hand, existing PM-specific dynamic graph frame-
works, such as NVGRAPH [40] and, more recently, XPGraph [64],
continue to follow the traditional approach of coordinating separate
persistence-friendly and analysis-friendly data structures (i.e., edge
list or adjacency list) on DRAM or PMs. This approach still leads to
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overly complicated data synchronization between data structures
and creates unnecessary conversions or movements.

In this study, we introduce a novel approach to design a unified
graph data structure, serving both graph persistence and analysis
directly from persistent memory. To this end, we propose DGAP,
a Dynamic Graph Analysis framework specifically designed for
Persistent memory. DGAP is built upon a recently proposed muta-
ble Compressed Sparse Row (CSR) graph structure [24, 66], which
leverages Packed Memory Array (PMA) [5] for efficient graph up-
dates and analysis. Instead of naively porting mutable CSR to PMs,
DGAP introduces a series of new designs to enhance its perfor-
mance on PMs. Firstly, DGAP introduces a new per-section edge log
data structure to mitigate the write amplification issues associated
with mutable CSR. Secondly, DGAP integrates new per-thread undo
logs to support high-performance crash-consistent rebalancing op-
erations, which are frequent and costly operations in mutable CSR.
Thirdly, DGAP strategically caches various mutable CSR compo-
nents in DRAM according to the workloads. Through these designs,
DGAP is able to deliver exceptional performance on both graph
updates and graph analysis by maximally utilizing PMs.

We implemented DGAP in around 2,000 lines of C++ code and
compared its performance to that of state-of-the-art graph frame-
works on PMs, usingmultiple graph analysis algorithms on different
real-world graphs. Our results show that DGAP achieves up to 3.2×
improved graph update performance and 3.77× enhanced graph
analysis performance compared to leading graph frameworks, such
as XPGraph, LLAMA, and GraphOne.

The remainder of this paper is organized as follows: In §2 we
discuss the background and motivation of this study. We introduce
persistent memory device, existing graph storage formats includ-
ing PMA-based mutable CSR, and most importantly, why directly
porting PMA-based mutable CSR to PMs does not work. In §3, we
present the key components of DGAP and its operations in details.
We present the extensive experimental results in §4. We compare
with related work in §5, conclude this paper and discuss the future
work in §6.

2 BACKGROUND AND MOTIVATION
2.1 PMs and Optane DCPMM Overview
2.1.1 Overview. Persistent memory describes storage devices that
are accessible in bytes via memory interfaces and can retain the
stored data after the power is off [1, 32, 36, 53]. Intel Optane DC
Persistent Memory is the first commercially available PMs [46, 62].
Working on Intel Cascade Lake platforms, Optane can scale up to
24TB in a single machine [13]. It can be configured in eitherMemory
mode orApp Direct mode [50]. InMemory mode, the Optane devices
are exposed as DRAM,with the actual DRAMbecomes a transparent
‘L4’ cache to accelerate data access. However, this model does not
support data persistence. In App Direct mode, Optane devices are
directly exposed to users alongside DRAM. This mode allows users
to access both DCPMM and DRAM and offers data persistence
capability. In this study, we focus on App Direct mode.

2.1.2 Performance Features. PMs exhibit performance characteris-
tics critical for building graph storage on them. For instance, their

writes are slower due to the added persistence cost. The perfor-
mances of large sequential accesses are often better than small
random accesses due to the internal read/write buffers in these
devices. Here, we use Optane DCPMM as an example to further
highlight some performance features [25, 26, 28, 59, 62, 69, 70].
Firstly, the read/write performance of Optane DCPMM is asymmet-
ric. Write operations, particularly persistent ones, incur significant
overheads (e.g., up to ∼ 7-8× slower than DRAM). In contrast, read
latencies are around ∼ 2-3× slower than DRAM. This underscores
the importance of minimizing unnecessary writes. Secondly, since
Optane DCPMMuses 256 bytes internal write buffers, small random
writes will perform much worse than large sequential writes. It is
then critical to ensure the writes can be properly grouped [20].

2.1.3 Persistence Features. The challenge to achieve persistence
in PMs is that not all the components in the memory hierarchy is
persistent. Optane DCPMM introduces a concept called Asynchro-
nous DRAM Refresh (ADR) which ensures during a power loss, all
data in ADR will be written to PMs. But ADR does not include CPU
caches. To guarantee data persistence, programmers must explicitly
call CLFLUSHOPT and SFENCE instructions to flush the cache line
and enforce the memory operations order [9]. But even with the
cache line flushed and memory fenced, large writes to PMs may
still be partially persisted as its atomic write unit is small (i.e., 8
bytes). Transactions are essential for ensuring data safety during
large writes, yet they can significantly affect the performance, as re-
cent research suggested [21, 67]. Lately, extended ADR (eADR) was
introduced in the 3rd generation Intel Xeon Scalable Processors to
make CPU caches included in the power fail protected domain [14].
The eADR feature greatly simplified the programming [73]. But
it is not available in all PMs platforms. The applications need to
recognize the devices and perform correctly and efficiently regard-
less which platforms are supported. DGAP is implemented to work
with both ADR and eADR platforms.

2.2 Graph Store and CSR
At the heart of graph frameworks are their storage data structures.
There have been a significant number of graph storage data struc-
tures, such as edge list (EL), adjacency list (AL), Compressed Sparse
Row (CSR), and many others [7, 55] used in different graph frame-
works [16, 33, 34, 42, 54, 57, 75].

EdgeList (EL) is a sequential edge log, efficient for edge additions
but slow for vertex accesses since it requires scanning the entire
edge log. The Adjacency List (AL) and its variations, like blocked
adjacency list [49], use a per-vertex linked list for storing vertex
neighbors. While perform well at graph insertions and single vertex
operations, they struggle with whole graph analysis due to memory
overheads and cache inefficiencies [33, 42].

Compressed sparse row (CSR), on the other hand, is designed for
efficient graph analysis. It groups all edges from the same vertex
together and stores them sequentially in an edge array, while the
vertex array stores each vertex’s starting index. In this way, CSR
supports both per-vertex queries and edge iterations efficiently.
It delivers extreme graph analysis performance because most of
the vertices and edges are accessed sequentially. Its major limi-
tation, however, is that it can not accommodate dynamic graph
updates without rebuilding the entire edge array for each edge
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insertion. To address this limitation, recent studies have proposed
to use the Packed Memory Array (PMA) to make the edge array
mutable [15, 24, 56, 65]. Such mutable CSR data structures can offer
extreme graph analysis performance while handling graph updates
efficiently, making them a perfect candidate to build the PMs-based
graph framework.

2.3 PMA-based Mutable CSR
The Packed Memory Array (PMA) is fundamentally a sorted array
with reserved empty gaps interspersed [5]. These gaps provide
room for future insertions without shifting the entire array. To
maintain the gap density, PMA employs a binary PMA Tree to track
density changes in different sections of the array. For any section
located at tree height 𝑖 , PMA assigns the lower and upper bound
density thresholds as 𝜌𝑖 and 𝜏𝑖 . When insertions or deletions make
the density of a section out of the range, PMA initiates rebalancing
operations to adjust its gap density by redistributing gaps among
adjacent sections. The rebalancing will happen at a level where
all affected sections’ densities together will fall within the density
range. If the whole array is full, PMA resizes the array by increasing
its size. The amortizedwrite overhead for adaptive PMA is𝑂 (log𝑁 ).
More details about PMA can be found in [5].

PMA-based mutable CSRs incorporate this concept by replacing
the original CSR edge array with the packed memory array, exem-
plified by PCSR [65] first. VCSR [24] further optimizes PCSR by
considering the skewed workloads inherent in real-world graphs. It
partitioned the edge array into varied-size sections and distributed
the gaps unevenly based on historical workloads in each section to
improve performance.

2.4 Issues of Mutable CSR on PMs
PMA-based mutable CSR has been proven effective to support both
graph updates and analysis. However, due to the unique features
of PMs, a naive implementation leads to problematic performance,
as summarized in the later three issues.

2.4.1 Write Amplification Issue. Although mutable CSR avoids
shifting the entire edge array for insertion, it still requires shifting a
small range of elements if the targeted insertion location is occupied.
These additional shifts result in write amplifications. Compared to
DRAM, write amplifications in PMs are more critical due to PMs’
asymmetric read/write performance. Additionally, these nearby
shifts often occur within a range smaller than 256 bytes, the size of
the Optane DCPMM internal write buffer. This forces the buffers
to be flushed before being filled, leading to inefficient buffer uti-
lization. To illustrate the issue, we inserted the real-world graph,
Orkut [38], into a mutable CSR implementation and calculated the
ratio of actual memory writes v.s the edge size (write amplification)
during insertions. Figure 1(a) reported the ratio during insertions.
We can observe that the write amplification can be as high as 7×. It
is hence critical to address such an issue.

2.4.2 Crash Consistency Issue. In addition to nearby shifts, inser-
tions could further trigger PMA rebalancing when a section be-
comes full. These rebalancing operations move large chunks of
sequential elements to new locations. Although efficient in DRAM,
these operations are costly on PMs due to the persistence guarantee.

(a) Write amplification issue in
PMA-based CSR (Orkut Graph)

(b) High crash consistency 
overhead issue in PMs

(c) In-place update 
issue in PMs

Figure 1: Issues of PMA-basedmutable CSRs on PMs. The evaluation
platform is described in Sec. §4.1.

It is necessary to use transactions to protect large chunks of writes.
However, as demonstrated in Figure 1(b), transactions are extremely
expensive on PMs. The time required to insert a graph into DRAM,
PMs (without transactions), and PMs-TX (with transactions) differ
substantially [25, 26]. Therefore, it is crucial to develop efficient
crash recovery for frequent rebalancing operations.

2.4.3 In-place Update Issue. In-place updates in DRAM are effi-
cient, leveraging the cache. But, persistent in-place updates on PMs
are exactly the opposite. Figure 1(c) illustrates the performance of
in-place updates on PMs. We present the latency of writing the
same size of data in a sequential (Seq), random (Rnd), and in-place
(In-place) manner respectively. We can observe 7× difference in
latency. The reason is that persistent in-place updates repeatedly
flush the same cache line and dramatically slow down the perfor-
mance due to the blocking of previous flushing operations and
possible on-chip wear-leveling protection [28]. Crucial components
of mutable CSR, such as the vertex degree and the PMA tree, require
frequent in-place updates. Conducting these updates directly on
PMs would be significantly slow. It is essential to design the data
placement strategy to minimize in-place updates on PMs.

3 DGAP DESIGN AND IMPLEMENTATION
DGAP, as illustrated in Fig.2, is designed to address the three is-
sues outlined in Sec. §2.4. Its architecture comprises four primary
components: 1 vertex array, 2 edge array, 3 per-section edge log,
and 4 per-thread undo log. When interacting with DGAP, users
launch multiple writer threads for graph updates and can execute
multi-thread graph analysis tasks on the latest graphs. DGAP en-
sures the analysis tasks access only the latest graph snapshot when
they start. This guarantees the long-running multi-iteration graph
algorithms can access a consistent graph throughout their run.

1 Vertex Array. DGAP stores all vertices sequentially in the vertex
array. These sequential vertex IDs result from pre-processing by up-
stream applications, and their range is often known. Consequently,
DGAP can pre-allocate the vertex array accordingly. Each vertex
(𝑣) in the vertex array takes 16 bytes to store three key pieces of
metadata: its current degree (𝑑𝑒𝑔𝑟𝑒𝑒𝑣 , 4 Bytes), starting index in
the edge array (𝑠𝑡𝑎𝑟𝑡𝑣 , 8 Bytes), and a pointer to its per-section edge
log (𝑒𝑙𝑣 , 4 Bytes). The most important design decision about the
DGAP vertex array is placing it entirely in DRAM. The main reason
behind this design decision is to prevent frequent in-place updates
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Figure 2: Overall architecture of DGAP.

on PMs. For dynamic graphs, the vertex degree (𝑑𝑒𝑔𝑟𝑒𝑒𝑣 ) must be
updated each time an edge is inserted. The pointer to the per-section
edge log (𝑒𝑙𝑣 ) also changes when edges are added to the edge log.
Both operations are frequent enough to significantly impact overall
performance if executed as in-place updates on PMs. Storing them
in DRAM effectively avoids this issue.

Data safety is a critical issue when storing the entire vertex
array in DRAM. DGAP introduces a new pivot element for each
vertex in the edge array and leverages these elements to reconstruct
the entire vertex array after a crash. More details are provided in
Sec. §3.1.5. The reconstruction is fast due to the high bandwidth
of PMs for sequential accesses. Detailed results are reported in the
evaluation section. Another potential concern is DRAM capacity.
Theoretically, each DGAP vertex takes 16 bytes, so 16GB DRAM
can store 1 billion vertices. Since most graphs have more edges
than vertices, we anticipate that the capacity issue will primarily
affect the PMs edge array rather than the DRAM vertex array.

2 Edge Array. DGAP stores all the edges in the edge array on
persistent memory. The edge array is a PMA constructed based on
the VCSR strategy [24]. Following other dynamic graph frameworks
(e.g., XPGraph, GraphOne), each DGAP edge takes 4 bytes as it only
stores the destination vertex ID. Storing the source vertex ID is
unnecessary, as it is shared by all edges originating from the same
vertex. The source vertex ID is instead stored as a pivot element at
the beginning of each vertex’ edge list. The pivot element serves
as additional metadata in DGAP to reconstruct the DRAM vertex
array after crashes. Specifically, the pivot is a special ‘edge’ element
with a value of −vertex-id. Since it is negative and illegal as a vertex
ID, it can be used to denote the start of the vertex during recovery.
Further details about DGAP recovery are in Sec. §3.1.5.

One important design decision regarding the DGAP edge array
is the storage order of all edges for a vertex. Traditionally, the edges
of a vertex are sorted based on their destination vertex ID [65].
However, DGAP stores them according to their insertion order,
meaning a new edge will always be stored at the end of the vertex’
edge list. So, an edge (1 → 2) may be stored after edge (1 → 6).
This seemingly minor change is critical for DGAP to maintain
a consistent snapshot of the latest graph for analysis tasks. This
means that for any vertex 𝑣 , if we know its degree at time 𝑡 (𝑑𝑒𝑔𝑟𝑒𝑒𝑡𝑣 ),
we can easily determine its readable edges for 𝑇𝑎𝑠𝑘𝑡 , which should

fall within the range [𝑠𝑡𝑎𝑟𝑡𝑣, 𝑠𝑡𝑎𝑟𝑡𝑣 + 𝑑𝑒𝑔𝑟𝑒𝑒𝑡𝑣 ). Any edge after that
will not be visible to 𝑡𝑎𝑠𝑘𝑡 . Hence, creating a snapshot of the latest
graph only involves storing the degrees of all vertices at time 𝑡 . At
present, we simply cache this degree info in theDegree Cachewithin
each task’s DRAM space, as shown in Fig. 2. This can be done at the
beginning of the analysis tasks. The primary issue here is memory
cost. Many of the degrees are the same and do not need to be stored
in each task. In the future, we plan to implement a Copy-on-Write
(CoW) Degree Cache so that all tasks and the main vertex array
can share unchanged degrees without wasting memory.

3 Per-section Edge Log. A primary performance challenge in ex-
isting PMA-based mutable CSRs on PMs is the write amplifications
caused by nearby shifts within each PMA section during insertions.
To mitigate this, our principal approach is to temporarily hold these
insertions in a persistent log and merge them back in batches later.
We introduce the concept of per-section edge logs in DGAP, repre-
senting a pre-allocated, continuous, fixed-size space (ELOG_SZ) on
PMs dedicated for each PMA section. These logs temporarily store
new edge insertions when a nearby shift becomes necessary. In our
prototype, ELOG_SZ is set to 2K bytes.

Each element stored in the edge log contains three metadata
components and occupies 12 bytes: (i) source vertex ID, (ii) des-
tination vertex ID, and (iii) a back-pointer. This back-pointer is
designed to connect all edges originating from the same source
vertex, arranging them in reverse order within the edge log. The
most recent edge points back to the preceding edge of the same
source vertex in the log. The edge log pointer (𝑒𝑙𝑣 ), stored in the
vertex array, pinpoints the most recent edge of a vertex in the edge
log. A detailed insertion workflow of DGAP is shown in Fig. 3.

When the per-section edge log reaches 90% usage, a merging
operation is initiated, integrating the edge log data back into the
edge array. Notably, edges within the edge log also contribute to
the density of the corresponding edge array section. Therefore, the
standard PMA rebalancing operations might be triggered if either
the edge array or edge log is approaching full capacity. During
DGAP rebalancing, data from both the edge array sections and
their respective edge logs are considered.

4 Per-thread Undo Log. PMA Rebalancing, which redistributes gaps
among sections, is critical for mutable CSR. To ensure data safety, it
requires transaction mechanisms to avoid partial writes and guar-
antee crash consistency. While existing PMs programming libraries
like PMDK [50] support transactions natively, using them directly
for recurrent rebalancing operations results in significant overhead,
due to two major bottlenecks: 1) the high memory allocation cost
of frequent journal allocations and 2) performance overheads due
to excessive ordering [21]. In DGAP, we introduce a per-thread
undo log specifically to enhance the performance of rebalancing
while ensuring crash consistency. During insertion, whenever a
Writer Thread triggers rebalancing, before actually moving data, it
first uses its own undo log to persistently backup the data set to
be relocated, chunk by chunk, acting as an ‘undo log’. If a crash
happens in the middle, we can recover the data from the undo log.
The per-thread undo log is pre-allocated in fixed size (i.e., ULOG_SZ)
for eachWriter Thread. In our prototype, ULOG_SZ is set to 2K bytes.
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Figure 3: Two insertion cases in DGAP. The dashed blue line points
to the starting index of a vertex in the edge array.

3.1 DGAP Graph Operations
This section explains how the DGAP components work together to
serve various graph operations.

3.1.1 Initialization. When DGAP starts for the first time, it takes
multiple user-specific parameters for system initialization. The
number of vertices and edges in the graph are specified by the
parameters INIT_VERTICES_SIZE and INIT_EDGES_SIZE. DGAP
allocates the initial vertex array in DRAM and the edge array in PMs
accordingly. Both parameters are just initial user estimations. The
actual numbers of vertices or edges can significantly surpass these
values. When this happens, DGAP automatically resizes both the
vertex and edge arrays during insertions. DGAP also utilizes the pa-
rameters ELOG_SIZE and ULOG_SIZE to pre-allocate the per-section
edge logs and per-thread undo logs. Furthermore, DGAP initializes
multiple key metadata pieces on PMs for its operation. For instance,
it maintains a global flag, NORMAL_SHUTDOWN, on PMs to determine
if DGAP had a graceful shutdown in its previous session. Whenever
DGAP restarts, this value guides the system initialization process.
In addition, DGAP creates and upholds various DRAM indexing
metadata, including the PMA tree for density tracking. Locks are
allocated based on this PMA tree to ensure concurrent reads/writes
in DGAP. More details are discussed in later subsections.

3.1.2 Graph Updates. DGAP utilizes the PMA-based mutable CSR
structure to enable dynamic graph updates. For edge updates, an
edge pair (𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡 ) will be fed to the g.insertE() call. For vertex
updates, a vertex ID (𝑣𝑠𝑟𝑐 ) will be fed to the g.insertV() call. Edge
updates include both edge insertions and deletions. Deletions are
executed by re-inserting the same edge marked with a tombstone
flag. Specifically, we set the first bit of the destination vertex ID to
1, signifying that the edge has been removed from the graph. In the
following, we delve into edge insertion operations.

Edge insertion includes two steps: 1) inserting the new edge
into the edge array or edge log, and 2) updating the degree and
pointer in the vertex array. The DRAM vertex array is updated
only after the PMs edge array has been successfully updated and
flushed. In this way, even crash happens after PMs updates, the
DRAM data structures can be reconstructed afterward. Given that
we store all edges of a vertex chronologically, the insertion point for
a new edge [𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡 ] in the edge array can be easily determined.

It can be calculated directly from the degree of 𝑣𝑠𝑟𝑐 and its starting
index using the formula (𝑠𝑡𝑎𝑟𝑡𝑣𝑠𝑟𝑐 + 𝑑𝑒𝑔𝑟𝑒𝑒𝑣𝑠𝑟𝑐 ). If the calculated
location is a gap, the new edge can be inserted in an atomic manner.
However, if the location is taken by a subsequent vertex, which
requires a nearby shift, DGAP appends the edge to the per-section
edge log to minimize write amplification.

Fig. 3 illustrates two DGAP insertion scenarios. This figure pro-
vides a snapshot of the vertex array, edge array, and the associated
per-section edge log. Here, edges for vertices (6, 7, 8, 9) are showcased
on the edge array with gaps, while the per-section edge log is empty.
Fig. 3(a) first shows a normal insertion case (8 → 9) where the in-
tended edge location is empty. Then the edge is inserted on the edge
array (marked in red). Fig. 3(b) shows another scenario where the
desired locations for a series of edge insertions (e.g., 6 → 1, 6 → 4)
are already taken (by vertex 7 and its edges). In this case, new edges
will be stored on the per-section edge log to reduce the unnecessary
data shifts within the edge array. Multiple edges of the same vertex
on the edge log will be connected using the back-pointer, shown as
the black arrow from (6, 4) to (6, 1) in Fig. 3(b).

After many edge insertions, the corresponding section of the
edge array is becoming full. This will trigger a PMA rebalancing
operation that redistributes the gaps among adjacent sections to
ensure all the sections maintain a satisfactory density. While DGAP
adopts the same logic to initiate the rebalancing, it carries out the
operation with assistance from the per-thread undo log to guarantee
data consistency. Further details about crash-consistent rebalancing
are elaborated in Sec 3.1.4.

3.1.3 Graph Analysis. DGAP supports graph analysis by offering
high-performance interfaces to iterate through all vertices (i.e.,
g.v()) and the edges associated with a vertex (i.e., v.e()). Graph
analysis tasks might run for extended durations. For instance, the
PageRank algorithm executed on the Orkut graph can take over 20
seconds. During this time, the graph may be updated. To ensure a
consistent view of the graph, it is necessary to guarantee that future
reads from the same task bypass the newly added data. To achieve
this, users must first call the g.consistent_view() function prior
to iterating through the graph in their analysis tasks. Once this
function is invoked, DGAP allocates a Degree Cache for the analysis
task and temporarily holds the graph updates. It then copies the
degree part of the vertex array to the per-task Degree Cache. This
snapshot of degree information aids in pinpointing the appropriate
set of edges for reading during task execution.

Once the snapshot is created, DGAP starts serving data-accessing
function calls. For each call, DGAP initially reads the required
metadata about 𝑣 from DRAM vertex array, then accesses the PMs
edge array based on that. The necessary metadata from vertex array
includes the starting index (𝑠𝑡𝑎𝑟𝑡𝑣 ) and the edge log pointer (𝑒𝑙𝑣 ).
The degree information is obtained from the Degree Cache created
at the task starting time 𝑡 (𝑑𝑒𝑔𝑟𝑒𝑒𝑡𝑣 ). If 𝑒𝑙𝑣 is NULL, then iterating
through 𝑣 ’s edges involves simply iterating the corresponding edge
array from 𝑠𝑡𝑎𝑟𝑡𝑣 to (𝑠𝑡𝑎𝑟𝑡𝑣 + 𝑑𝑒𝑔𝑟𝑒𝑒𝑡𝑣 ). If 𝑒𝑙𝑣 is not NULL, the edges
also come from the edge log. In this case, we first scan the edge
array. If the edge array does not contain a sufficient number of
edges as needed (based on 𝑑𝑒𝑔𝑟𝑒𝑒𝑡𝑣 ), DGAP proceeds to scan the
edge log. The 𝑒𝑙𝑣 pointer always points to the last edge. From this
point, we track all edges in the edge log through their back-pointer.
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Figure 4:Crash consistent PMA rebalancing inDGAP. In (a), the blue
area shows the intended data movement region; the green dashed
boxes show the expected state after the data movement. In (b), a
crash case is shown after moving data 3.

To read only the required number of edges (assuming 𝑟𝑒𝑠𝑡𝑡𝑣 ), we
allocate a first-come-first-out (FIFO) buffer with a size of 𝑟𝑒𝑠𝑡𝑡𝑣 to
keep only the necessary edges.

3.1.4 Crash Consistent PMA Rebalancing. Thus far, we have dis-
cussed how DGAP handles point insertions without initiating rebal-
ancing operations. In PMA, however, rebalancing is crucial when
the insertions of new edges makes sections of the edge array overly
dense. These rebalancing operations redistribute gaps among neigh-
boring sections to alleviate the density issue. Given that rebalancing
involves considerable amount of data movement, it necessitates
crash-consistent transactions. Yet, standard PMDK transactions are
proven to be overly expensive. As a solution, DGAP introduces per-
thread undo logs to achieve more efficient, crash-consistent DGAP
rebalancing.

For every Writer Thread in DGAP, a per-thread undo log is al-
located on PMs to support the execution of triggered rebalancing.
Fig. 4 illustrates the rebalancing process in detail. Once DGAP de-
termines a valid rebalancing range based on density thresholds,
it recalculates the location of each vertex within these sections,
assuming the gaps will be redistributed evenly. For instance, in
Fig. 4(a), the new location of vertex 𝑣8 and its edges is represented
by dashed boxes above the edge array. During rebalancing, all ver-
tices and their edges must be moved to their new locations. To
prevent permanent data loss in the event of a crash, this relocation
process must be safeguarded using a transaction mechanism.

To perform data movements in a crash-consistent manner, DGAP
first backs up the data that may be overwritten during data move-
ments in the undo log. It then calls CLWB and SFENCE to ensure that
the data is persisted before proceeding with the actual data move-
ment on the edge array. If a crash occurs before the backup of data
on the undo log is completed, the data on the original edge array
remains unaffected, as no data movement has occurred yet. After
the backup, DGAP initiates the process of moving and overwriting
data element by element. DGAP iteratively performs these steps
until the entire rebalancing range is moved. In each step, it moves
a maximum of ULOG_SZ=2K bytes of data.

Figure 4(b) illustrates a crash scenario during rebalancing. In this
instance, DGAP has already backed up the moving data in the undo

log and is beginning to shift all edges of 𝑣8 one element to the right.
Suppose that after the edge (8, 3) has been moved, a crash occurs,
resulting in an inconsistent edge array due to the presence of two
edges (8, 3). However, a consistent backup of this region is available
in the persistent undo log. Upon restart, DGAP recognizes the crash
by checking its NORMAL_SHUTDOWN flag. It then iterates through all
per-thread undo logs and utilizes the backup data to overwrite the
inconsistent regions. The idx index, stored at the beginning of the
per-thread undo log, is used to determine which part of the edge
array should be overwritten for recovery. After restoring the data,
DGAP proceeds to reissue the rebalancing operation to complete
the interrupted process.

3.1.5 Shutdown and Crash Recovery. DGAP can initiate a graceful
shutdown by calling g.shutdown(). During a normal shutdown,
DGAP first waits for all ongoing graph analytic tasks to complete.
Subsequently, it persists all DRAM components to persistent mem-
ory (PM), including the vertex array and PMA-related metadata.
While this backup process may require a few seconds, it ensures a
quicker subsequent startup. Detailed normal shutdown times are
measured and presented in the evaluation section. Before shut-
ting down, DGAP resets the NORMAL_SHUTDOWN flag to indicate a
graceful shutdown.

After rebooting, DGAP first checks the NORMAL_SHUTDOWN flag
to understand whether the previous shutdown is normal or due to a
crash. If the flag indicates a normal shutdown, DGAP simply loads
the vertex array and PMA-related metadata to DRAM and starts
operating. If this is a reboot after a crash, DGAP initiates a data
recovery process. Initially, DGAP scans the edge array to recon-
struct the vertex array and build PMA metadata, such as the density
tree. Following that, DGAP scrutinizes all per-thread undo logs and
recovers the inconsistencies resulting from crashed rebalancing op-
erations. It then continues to finish the ongoing rebalancing from
the inconsistent region. Next, DGAP checks the per-section edge log
to retrieve the metadata for these vertices and update the vertex
array. After all these steps, DGAP can start to operate normally. In
the evaluation section, we present the time durations associated
with both standard and crash reboots.

3.1.6 Concurrency Control. DGAP supports multi-thread graph
updates (multipleWriter Threads) and graph analysis (multipleAnal-
ysis Tasks) on PMs. To optimize performance, DGAP implements an
optimistic read/write lock to enable multiple readers and writers to
run concurrently, as long as they do not write to the same section.
For each PMA section, DGAP maintains a lock and its linked con-
dition variable, resulting in |𝑙𝑜𝑔(𝑣) | locks. When inserting an edge
(𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡 ), DGAP first needs to acquire the lock for the respective
section of 𝑣𝑠𝑟𝑐 so that no other threads can insert into the same
section. This also prevents concurrent readers. After the insertion,
DGAP checks whether the density of 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑣𝑠𝑟𝑐 has reached the
rebalancing threshold. If rebalancing is needed, the writer thread
first sets the condition variable of 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑣𝑠𝑟𝑐 to block other writes
or rebalancing operations in this section. It then attempts to acquire
all the locks of the sections affected by the rebalancing, sequentially.
To prevent deadlocks, DGAP follows a strict order (from low to high
section IDs) when acquiring locks. After obtaining all the locks,
DGAP executes the rebalancing as previously described. Finally,
DGAP resets the condition variable and notifies all waiting writes
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Table 1: A list of graph kernels and inputs and outputs used in our evaluations.

Graph kernel Kernel Type Input Output Notes

PageRank (PR) Link Analysis - |𝑉 |-sized array of ranks Fixed number (20) of iterations
Breadth-First Search (BFS) Graph Traversal Source vertex |𝑉 |-sized array of parent IDs Direction-Optimizing approach [4]
Betweenness Centrality (BC) Shortest Path Source vertex |𝑉 |-sized array of centrality scores Brandes approx. algorithm [8, 43]
Connected Components (CC) Connectivity - |𝑉 |-sized array of component labels Shiloach-Vishkin [2, 58]

Table 2: Graph inputs and their key properties.

Datasets Domain |𝑉 | |𝐸 | |𝐸 |/|𝑉 |

Orkut social 3,072,626 234,370,166 76
LiveJournal social 4,847,570 85,702,474 18
CitPatents citation 6,009,554 33,037,894 6
Twitter social 61,578,414 2,405,026,390 39
Friendster social 124,836,179 3,612,134,270 29
Protein biology 8,745,543 1,309,240,502 149

or rebalancing operations to start. Note that DGAP stores all the
locks in DRAM instead of PMs to increase performance. If a crash
occurs, all the locks are lost. The pending rebalancing operation
will be recovered by checking the per-thread undo log. The pending
edge writes will be ignored, as they have not yet been returned
successfully to users.

4 EVALUATION
We developed DGAP using the PMDK library [50]. Its core data
structure consists of approximately 2,000 lines of C++ code. The
code is publicly available on Github1. In this section, we compare
DGAP with other graph analysis frameworks on real-world graphs
with synthetic graph insertion patterns. The results reported are
the averages of five runs.

4.1 Evaluation Setup
Evaluation Platform.We conducted all evaluations on a Dell R740
rack server equipped with a 2nd generation Intel Xeon Scalable
Processor (Gold 6254 @ 3.10 GHz) featuring 18 physical cores. The
server also included 6 DRAM DIMMs with 32 GB each (for a total
of 192 GB) and 6 Optane DC DIMMs with 128 GB each (for a total
of 768 GB). We configured Optane DC in App Direct mode. The
system ran Ubuntu 20.04 and used the Linux kernel version 4.15.0.
Our implementation is based on PMDK 1.12.

Graph Algorithms. To ensure a fair comparison among various
graph analysis frameworks, we used the same implementations of
four graph algorithms from the GAP Benchmark Suite (GAPBS) [3].
These algorithms are PageRank (PR), Breadth-First Search (BFS),
Betweenness Centrality (BC), and Connected Components (CC),
detailed in Table 1. GAPBS also offers an optimized Compressed
Sparse Row (CSR) implementation, which we modified for persis-
tent memory to serve as one of our evaluation baselines.

Graph Datasets.We used several real-world graphs from SNAP
datasets [38] in our evaluations. Table 2 lists these graphs and
their key properties. We generate the insertion order by randomly
shuffling all the edges for these datasets. Note that, in all the exper-
iments, we will insert the first 10% of the graph and then start to

1https://github.com/DIR-LAB/DGAP

benchmark the insertion performance for the purpose of warming
up the system, similar to the warm-up stage in YCSB [12].

Compared Systems. To showcase the performance of DGAP,
we compare it with multiple data structures and state-of-the-art
dynamic graph frameworks.

First, we ported two foundational graph data structures to per-
sistent memory to serve as baselines. The Compressed Sparse
Row (CSR) on persistent memory is based on GAPBS. CSR serves
as a baseline for graph analysis evaluations since 1) it can not be
updated and 2) it offers the optimal graph analysis performance
due to its compact memory layout. We also implemented Blocked
Adjacency-List (BAL) on persistent memory as another extreme
baseline. BAL is known to have poor graph analysis performance
due to pointer chasing and great edge insertions performance due
to efficient appending to a block. We use BAL as a baseline to
understand the insertion performance of DGAP.

We further compared DGAP with three state-of-the-art dynamic
graph frameworks designed to support graph updates and analy-
sis. LLAMA uses a multi-versioned CSR structure to enable fast
graph analysis and graph mutations [42]. The graph updates are
conducted in batches and organized as multiple immutable snap-
shots in LLAMA. To avoid creating too many snapshots, in our
evaluation, we only created a snapshot after inserting 1% of the
graph, which ranges from 330K edges to 36M edges, depending
on the chosen graph dataset. In total, we created 90 snapshots for
each graph (the first 10% warm-up is a single snapshot). Because
graph analysis in LLAMA can not read the latest graph unless the
snapshot is created, these large snapshots mean its graph analysis
tasks may miss as many as 36 million edges, which might not be
acceptable in some applications. We ported LLAMA to persistent
memory by changing the location of its snapshot files to PMs space,
which shows a naive way of moving existing graph data structure
to persistent memory.

GraphOne is an in-memory graph analysis framework with an
extra durability guarantee using external non-volatile devices [33].
New data is first stored in an in-DRAM edge list in an append-only
manner. Background threads incrementally move this data to non-
volatile memory for persistence. To port GraphOne to persistent
memory, we changed the location of durable phase to the PM space
and required it to flush DRAM data after each 216 insertions to re-
duce the chances of losing data. We do not limit the DRAM usage of
GraphOne during graph analysis. Hence for some graphs, the graph
data may be completely cached in DRAM. Due to these settings,
we name this baseline as GraphOne-FD, indicating GraphOne
Flushing-DRAM, in the rest of the paper.

XPGraph is state-of-the-art PM-based dynamic graph system [64].
It is based on GraphOne but extends it with new designs for persis-
tent memory. Specifically, XPGraph stores both the edge list and
adjacency list in persistent memory to guarantee data persistence
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Figure 5: Dynamic graph insertion throughput in million edges per
second (MEPS). Higer value is better.

and leverages the DRAM as a cache to batch data into the adjacency
list. Similar to GraphOne, XPGraph also transfers data to DRAM for
graph analysis. In our evaluations, we used the default parameter
settings of XPGraph for comparisons.

4.2 Graph Insertions Performance
We first compared the graph updates, particularly the edge inser-
tion performance of DGAP, with other systems. Fig. 5 shows the
graph insertion throughput in MEPS (Million Edges Per Second)
using a single writer thread. The scalability results are reported
later. From these results, we can observe that DGAP achieves almost
the best performance across all datasets among all the frameworks.
It delivers 1.03 × −2.82× better performance than BAL, which is
considered extremely efficient in graph insertions as edges are sim-
ply appended to the end of each block. However, the inefficient
usage of persistent memory (e.g., journaling and transaction for
crash consistency) makes it slower in many cases. DGAP also out-
performs LLAMA, GraphOne, and XPGraph on persistent memory
by up to 6×, 2.5×, and 2.3×, respectively. It is obvious to us that
the costs of asynchronous batch data structure conversions and
movements between DRAM and PMs in LLAMA, GraphOne, and
XPGraph impact the performance significantly. It is worth noting
that, from the results, XPGraph performs better than GraphOne,
but not as significant as the original paper reports [64]. This is
because our GraphOne-FD has a large batch write size in DRAM,
which offers better performance but is impractical as this data may
be lost. Still, the better performance of DGAP clearly showcases
the efficiency of mutable CSR data structure on persistent memory.

4.2.1 Graph Insertions Scalability. We further evaluated the graph
insertions scalability by increasing the number of concurrent writer
threads from 1 to 16. Table 3 shows theMEPS throughput of 1, 8, and
16 threads. We can see DGAP scales with more threads. It delivers
up to 4.3× throughput in 16 threads compared with single thread
case. The concurrency model and write optimizations implemented
in DGAP help deliver such a scalable graph insertion performance
(6 to 8million edges/sec), which might be needed in many real-time
big data applications.

Across various systems, DGAP consistently ranks as either the
best or very close to the best in all scalability cases. BAL occasionally
delivers superior performance, primarily due to our implementation

DGAP BAL LLAMA GraphOne-FD XPGraph
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Figure 6: Time to run PageRank (PR) and Connected Components
(CC), normalized to CSR on PMM. Smaller is better.

of BAL utilizing finer-grain locks for concurrent insertions. Specif-
ically, while DGAP locks writers by edge section, BAL employs
vertex-based locking. Consequently, as the number of threads in-
creases, its performance scales more effectively. However, this may
not be a realistic representation, as an excessive number of locks
are needed. The scalability results of XPGraph are also noteworthy,
as it surpasses DGAP in the 16-thread case for three graphs. In
fact, these three graphs are all relatively small. We attribute the ex-
ceptional performance to XPGraph’s design. Specifically, XPGraph
includes a circular edge log for temporarily storing new insertions.
By default, the circular edge log has a capacity of 8GB, which can
entirely accommodate the three smaller graphs: Orkut, LiveJournal,
and CitPatents. In this context, archiving is not activated for these
graphs, resulting in XPGraph exhibiting exceptional performance.
For larger graphs with over a billion edges, DGAP demonstrates
12 − 21% better performance, as XPGraph is compelled to flush the
DRAM caches back to the persistent edge list more frequently.

4.3 Graph Analysis Performance
Graph analysis performance is key to our graph frameworks. In this
section, we show the performance of running four classic graph
algorithms (listed in Table 1) on different graphs. Among these four
algorithms, PageRank (PR) and Connected Components (CC) access
all vertices in each iteration, while Breadth-First Search (BFS) and
Betweenness Centrality (BC) access parts of the graphs each time
based on the calculation. They show different access patterns which
may impact the performance of the frameworks, as shown below.

1) PageRank (PR) and Connected Components (CC). Fig. 6 illus-
trates the relative speed of PageRank compared to CSR using a
single thread. Compared with CSR, which is best for graph analysis,
DGAP introduces only 37% overhead on average and achieves up
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Table 3: Graph insertion throughput (MEPS) using the different number of writer threads. Larger throughput is better.
𝑇1 𝑇8 𝑇16

Graph DGAP BAL LLAMA GO-FD XPGrp. DGAP BAL LLAMA GO-FD XPGrp. DGAP BAL LLAMA GO-FD XPGrp.
Orkut 2.52 2.35 1.84 1.23 1.30 6.49 5.97 2.33 2.54 4.78 7.37 5.26 2.40 2.86 8.84
LiveJournal 2.59 1.26 0.97 1.23 1.44 6.27 4.79 1.07 2.63 5.63 7.95 5.92 1.09 2.94 11.24
CitPatents 2.43 0.85 0.40 1.22 1.54 6.82 3.45 0.41 2.62 6.21 7.23 4.68 0.42 2.81 12.91
Twitter 1.86 2.02 1.61 0.73 0.82 5.35 5.51 2.13 1.99 3.22 6.82 5.99 2.17 2.43 6.06
Friendster 1.92 1.82 1.23 0.57 0.60 4.29 5.63 1.52 2.40 2.51 6.03 5.82 1.53 3.35 4.95
Protein 2.19 2.31 2.12 1.02 0.94 7.43 5.82 3.09 3.21 3.54 8.30 6.23 3.18 4.08 6.96
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Figure 7: Time to run Breadth-First Search (BFS) and Betweenness
Centrality (BC), normalized to CSR on PMM. Smaller is better.

to 2.9×, 2.9×, 1.4×, and 3.1× better performance compared to BAL,
LLAMA, GraphOne, and XPGraph respectively. It is particularly
interesting to observe that DGAP outperforms GraphOne-FD in
most datasets, even it is actually running on DRAM-cached data.
We believe this is because GraphOne uses adjacency list as its in-
memory data structure, which is less efficient for graph analysis
tasks that apply to all vertices and edges of the graph. While, since
DGAP is a mutable CSR, it shows much better cache locality in run-
ning these algorithms such as PageRank. We can observe the same
behaviors when running a similar algorithm CC, which iterates all
vertices/edges in each iteration. Specifically, Fig. 6 illustrates the
relative speed of CC compared to CSR on all the systems. Again,
DGAP shows up to 2.9×, 2.7×, 1.6×, and 2.4× better performance
than BAL, LLAMA, GraphOne, and XPGraph respectively.

2) Breadth-First Search (BFS) and Betweenness Centrality (BC).
Fig. 7 shows the relative speed of Breadth-First Search and Between-
ness Centrality compared to CSR. For BFS, DGAP outperforms BAL
and LLAMA by 2.30× and 3.71×, respectively on average. However,
DGAP performs 2.77× and 1.81× worse than GraphOne and XP-
Graph in this particular workload. This is expected since BFS is
accessing edges of random vertices each time. The adjacency list in
GraphOne and XPGraph performs very well for these tasks. CSR

can not fully leverage its own spatial locality. In addition, since
most BFS only reaches a small part of the graph, GraphOne and
XPGraph can successfully cache the graph in DRAM. We observe
similar trends for Betweenness Centrality (BC) as Fig. 7 shows.
Since BC is more computationally and memory intensive. It also
covers larger parts of the graphs during computation, we can see
that DGAP actually catches up and delivers similar performance
compared with DRAM-based GraphOne and XPGraph. Specifically,
DGAP outperforms BAL, LLAMA, GraphOne, and XPGraph by up
to 1.08×, 8.19×, 1.21×, and 1.85× respectively.

4.3.1 Graph Analysis Scalability. To examine the scalability of
DGAP, we further ran the same graph algorithms using 1 to 16
threads and report the execution time (in seconds) in Table 4. Due
to the space limits, we only report results of 1 thread and 16 threads
for each case. From these results, wemake server observations. First,
DGAP scales well. It delivers up to 14.3×, 13.6×, 15.6×, and 4.7×
speedup using 16x threads running PageRank, BFS, BC, and CC algo-
rithms respectively. It is interesting to see that DGAP does not scale
well in CC. In fact, all the systems do not scale well in this algorithm.
After checking the source code, we noticed the bottleneck actually
comes from its inappropriate parallel for scheduling keywords. If
fixed, CC will deliver similar scalability for all frameworks. Since
our goal is not to improve the algorithm implementation, we re-
ported the results from the original GAPS implementation. Second,
DGAP still delivers the best performance in most graph analysis
algorithms. Similar to the single thread case, DGAP performs worse
than GraphOne and XPGraph in the BFS case. As discussed earlier,
this is mostly because GraphOne and XPGraph run BFS purely in
DRAM and their adjacency list structure fits BFS well.

4.4 DGAP Components Evaluations
DGAP Components Evaluations. In DGAP, we introduce three
designs to maximize PMs. We further evaluated their contributions
to the final performance. Specifically, we implemented and com-
pared three different versions of DGAP by incrementally excluding
its key components: (i) removing per-section Edge Logs as ‘No EL’;
(ii) further removing per-thread Undo Log as ‘No EL&UL’, replaced
using PMDK transactions; and (iii) further removing Data Place-
ment in DRAM as ‘No EL&UL&DP’, meaning both vertex array and
edge array are on PMs. The graph insertion performance results
are reported in Table 5. We only report the results for small-size
graphs, as we were not able to finish running all the tests on larger
graphs in a reasonable time.

The results show that the per-section edge log contributes the
most in performance improvements. Without it, DGAP performs
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Table 4: The execution time (in seconds) of four algorithms on all systems.𝑇1 denotes the time of one thread and𝑇16 denotes that of 16 threads.
PageRank BFS

CSR DGAP BAL LLAMA GraphOne XPGraph CSR DGAP BAL LLAMA GraphOne XPGraph
Graph 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16

Orkut 24.18 1.67 31.55 2.21 53.21 3.57 50.24 9.51 36.01 2.63 49.87 3.72 0.33 0.03 0.46 0.04 0.74 0.06 1.44 0.33 0.12 0.01 0.25 0.03
LiveJournal 9.07 0.71 12.46 0.94 32.12 2.30 32.69 5.12 17.14 1.24 36.45 3.04 0.34 0.03 0.43 0.04 1.26 0.10 1.93 0.50 0.20 0.03 0.42 0.05
CitPatents 5.83 0.49 8.17 0.63 23.47 1.73 23.30 2.83 9.75 0.70 25.21 2.38 0.47 0.04 0.57 0.05 1.84 0.14 3.46 0.68 0.19 0.03 0.35 0.06
Twitter 425.11 31.59 545.92 39.30 828.07 56.67 712.73 99.83 775.83 45.10 1032.06 77.99 7.91 0.71 10.09 0.74 19.72 1.47 32.50 6.65 3.58 0.33 5.55 0.71
Friendster 873.38 65.41 1131.84 80.84 1394.05 97.70 1353.57 186.81 1515.38 85.77 1922.26 142.49 14.77 1.12 16.10 1.19 16.79 1.41 50.23 13.54 6.92 0.50 10.41 1.07
Protein 203.48 13.22 274.91 16.85 316.65 20.43 264.23 34.59 336.89 20.61 372.11 27.96 0.90 0.08 0.82 0.08 0.97 0.10 12.51 1.27 0.50 0.04 0.72 0.09

BC CC
CSR DGAP BAL LLAMA GraphOne XPGraph CSR DGAP BAL LLAMA GraphOne XPGraph

Graph 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16 𝑇1 𝑇16

Orkut 5.22 0.42 5.40 0.42 6.10 0.46 79.07 5.71 7.98 0.58 8.01 0.81 2.60 0.42 3.45 0.73 5.71 0.88 5.94 0.87 4.08 0.75 4.77 0.71
LiveJournal 4.37 0.33 4.23 0.32 4.91 0.36 39.72 2.76 5.06 0.36 6.62 0.61 0.99 0.42 1.40 0.80 3.40 0.87 3.76 1.17 2.16 0.75 3.20 1.03
CitPatents 3.90 0.29 3.49 0.26 3.71 0.27 24.72 1.70 3.54 0.26 5.15 0.47 1.67 0.48 2.34 0.49 6.68 1.43 5.30 2.07 3.28 0.81 5.54 1.68
Twitter 106.10 7.83 122.39 7.86 117.09 8.41 717.39 48.54 141.17 9.13 190.22 15.81 71.53 16.45 88.76 23.48 134.42 28.68 121.06 25.20 126.66 24.80 139.90 30.89
Friendster 203.63 14.70 209.34 14.47 216.92 15.15 1568.58 105.37 287.51 17.59 372.87 28.95 155.40 23.72 192.71 36.41 229.48 33.45 260.48 42.37 269.54 37.79 284.53 44.65
Protein 2.01 0.31 2.09 0.27 2.14 0.27 24.42 1.86 5.43 0.45 3.88 0.47 66.50 4.52 84.52 6.74 102.86 6.74 106.01 11.19 112.01 9.67 113.26 11.93

Table 5: Insertion performance (in seconds) of different DGAPs.

Datasets DGAP No EL No EL&UL No EL&UL&DP

Orkut 83.55 374.86 383.52 588.37
LiveJournal 29.74 136.28 146.09 240.46
CitPatents 12.25 51.26 58.47 107.39

4.5× worse because of the write amplification caused by the nearby
shifts. Specifically, with per-section edge log, DGAP is able to reduce
the write amplification by 6× in the Orkut graph. Additionally, per-
thread undo log contributes another 13% performance improvement
by reducing the high memory allocation and excessive ordering
cost of transactions. Finally, placing the vertex array in PMs would
incur about 2× performance overhead. Placing all the remaining
metadata (e.g., PMA tree) in PMs would even double the overhead.
DGAP Configurations Evaluations. Besides three system com-
ponents, DGAP includes a set of configurations, impacting its per-
formance. For example, the size of per-section edge log will affect
the PM usages as well as the rebalancing frequency, impacting the
insertion performance. To evaluate it, we compared how its size,
ELOG_SZ, would impact graph insertion performance and PMs con-
sumption. The results are reported in Fig. 8. Due to space limits, we
only show results for Orkut and LiveJournal graphs. Other graphs
have similar patterns. We changed ELOG_SZ from 64 bytes to 16
KB. The bar length represents the total space needed to store all
the per-section edge log, which increases proportionally as ELOG_SZ
increase. The labels above each bar further report the percentage-
wise utilization of these logs during graph insertions. We can see
as the edge log increases, the utilization rate reduces significantly
from 80.96% to 5.60% as there might not be so many nearby shifts
to fill the logs. The green line shows the delivered insertion perfor-
mance based on each log size. It is clear that larger logs reduce the
insertion time. But the benefits become much smaller after 2048,
which is chosen as default ELOG_SZ size in DGAP.
DGAPRecovery Evaluations. Each time DGAP reboots, it reloads
the metadata into DRAM before operating. Such a normal start is
fast. In our evaluation, we found that DGAP spends 1.16 seconds
in rebooting even on the largest Friendster graph. After crash,
DGAP needs to do more housekeeping work to recover system
statuses. These steps include scanning the edge array and logs to
recover the inconsistencies caused by the crash. This indicates
DGAP crash recovery time will depend on the graph size. However,
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Figure 8: Impacts of the size of per-section edge log.

sequential access in PMs is fast, and so is the DGAP recovery. In
our experiment, we found that for the smaller graphs (e.g., Orkut,
LiveJournal, and CitPatents), DGAP takes less than 1 second. For
the larger graphs, it may take more than 4 seconds. But, note that
these time costs are for recovery from a crash only.

5 RELATEDWORKS
The works most closely related to ours are NVGRAPH [40] and
XPGraph [64]. Both frameworks are designed for persistent mem-
ory devices. NVGRAPH proposed a dual-version data structure for
NVM and DRAM to achieve high-speed data persistence and graph
analysis. However, since NVGRAPH was designed before actual
persistent memory devices were released, many of its assumptions
have later been shown to be inaccurate [70]. Consequently, it did
not leverage many performance features of PMs. As such, we do not
compare DGAPwith NVGRAPH, as it wouldn’t be a fair comparison.
Similar to DGAP, XPGraph was designed for and evaluated on Intel
Optane PMs, and is essentially a PM-based GraphOne. Through
extensive evaluations, we demonstrate that DGAP outperforms
XPGraph in both graph updates and graph analysis tasks, highlight-
ing the promising performance of mutable CSR data structures. A
recent study [19] systematically benchmarks graph processing on
PMs. However, this study assumes that persistent memory func-
tions as volatile, larger DRAM serving only graph analysis, which
is fundamentally different from DGAP.

In addition to PM-based graph analysis, there has been a large
number of PM-based indexing data structures, such as B+-Tree [9,
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10, 23, 39, 41, 47, 71, 74] and Hashtable [6, 11, 35, 45, 76, 77]. Some
works [18, 21, 22, 29, 31, 37, 44, 63] also proposed general guidelines
for porting in-memory data structures to PMs. Many of the DGAP’s
design choices are aligned with these existing studies, but focus
more on graph updates and analysis.

In addition to PM-based graph frameworks, there are a signifi-
cant amount of single-node dynamic graph analysis frameworks.
We categorize them into in-memory and out-of-core frameworks.
For in-memory dynamic graph frameworks [17, 24, 30, 48, 65], their
graphs are not persistent and need rebuilding after a crash or re-
boot. Even with data periodically synchronized to fast non-volatile
storage devices, like PMs, existing in-memory graph frameworks
still face the challenges in striking a balance between data loss and
graph update speed. Our evaluations on BAL, LLAMA, and Gra-
phOne show naively porting existing in-memory graph frameworks
to persistent memory will experience performance issues. DGAP
roots from in-memory data structure (mutable CSR) as well, but con-
tains a series of new designs to maximize the performance. Existing
out-of-core dynamic graph frameworks are designed based on slow
block-based storage devices [34, 42]. For example, in LLAMA [42],
newly added edges are first batched up in the delta map and period-
ically synced to a CSR snapshot. Such batch behaviors may not be
necessary on persistent memory. While, in DGAP, graph changes
are immediately visible to analytic tasks.

6 CONCLUSION AND FUTUREWORK
In this study, we present DGAP, a new graph analysis framework
built on persistent memory. DGAP leverages existing DRAM-based
mutable Compressed Sparse Row (CSR) graph structure with ex-
tensive new designs for persistent memory devices to achieve both
efficient graph updates and graph analysis. Our results show DGAP
outperforms state-of-the-art dynamic graph frameworks, such as
LLAMA, GraphOne, XPGraph on PMs by up to 3.2× in graph up-
dates and 3.77× in graph analysis. Our exploration of DGAP shows
that persistent memory is a promising alternative to support ef-
ficient dynamic graph analysis. In the future, we plan to further
improve DGAP designs, including a Copy-on-Write strategy for
Degree Cache and a fine-grained locking mechanism. We also plan
to investigate how to extend DGAP to a distributed environment
using RDMA in PMs to support even larger graphs.
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