
The case for a Learned Sorting algorithm

ANI KRISTO

KAPIL VAIDYA
UGUR CETINTEMEL

SANCHIT MISRA

TIMKRASKA

Outline

Ø Sorting

Ø Learned Sort basic algorithm

Ø Complexities faced

Ø Modified Learned Sort

Ø Model Architecture (RMI)

Ø Extensions

Ø Evaluation

Ø Optimization

Introduction

Sorting is a fundamental concept in computer science which helps
in many algorithms and data structures.

Sorting is an important part of the data preprocessing in machine
learning algorithms

There are a wide variety of sorting algorithms which works well
both for small keys and large keys.

Learned Sort

u Is a distribution sort which takes an array of elements and uses a learned model of CDF of
the data.

u Output is predicted using the trained empirical CDF model.

u Out-performs sequential Radix Sort , Tim Sort being tested upon 1 billion normally-
distributed double-precision keys.

A first Learned Sort

Q. In the intermediate steps, Insertion sort is used, what other sorting
method could be used here?

Insertion sort works efficiently for nearly sorted arrays. Tim Sort is a
hybrid sorting algorithm that combines merge sort and insertion sort.

Not a perfect model.. Why?

• Duplicate keys- will it be compensated by over-allocation?

• What if the keys are in the actual order and the CDF values made them out
of order?

• How are we going to minimize the collisions and handle the sorting order
of non-monotonic models in a better way?

There are options like:

• Chaining : We can chain keys using a linked list or sub-arrays which
again increases the dynamic memory allocation.

• Linear probing : Checks for the next nearest empty slot to fill the value.
Can misplace keys.

• Spill Bucket : The colliding keys can be separately stored in a bucket
which can be sorted and merged with the actual array at the end.

Q. There are three methods discussed to handle collision out of which the spill bucket
method is chosen. Are there any other methods that can be used here?

Histograms can also be able to handle collisions by dividing the data into small buckets
based on the frequency distribution of data that fits the cache-line. Only for a small number
of collisions.

Final Learned Sort – Cache Optimized Learned Sorting

RMI- Recursive Model Index.

u Models like Neural Networks, order preserving hash functions may be beneficial but are
too expensive to train.

u It is tree like structure which partitions data into subsets.

u These subsets are then recursively partitioned in similar way, with each subset having
associated with a linear model.

Choice of the CDF model

Extensions

u Making Learned sort in-place:
• The cache we are using now is dynamic which helps in speeding up the sorting process

• In-place version refers to maintaining a constant memory for example., in the in-place
version each bucket has a small buffer of size equal to the block size which can be used to
sort the elements without any additional requirement of memory again.

u Duplicates:

• Spill bucket can affect the performance if it becomes too large, which can be avoided by
incorporating a heuristic during the training time by tracking the repeated keys and
adding them to the exception list.

u Learning to sort strings:

• Excluding training time of the model.
• Has RMI architecture but taking strings as input

vectors considering the length
• A sample of array is taken and and encoded using

ASCII values.

• If we include the training time with the sorting time, Learned Sort still dominates the
other algorithms but by a margin of of 2-8%

Q. Why is sorting Strings an issue? How come they do not tokenize strings to sort those
values?

Strings can have varying lengths and can require large number of comparisons for the
combinations to work considering their relative order too. Tokenizing may work for small
dataset but to train a machine learning model we need a large dataset and that will be time
consuming.

Q. Would a small enough neural network or deep learning model be able to achieve a good
balance between model quality and runtime performance?
Smaller models may have fewer parameters and require less resources but may also reduce
accuracy. Ultimately, good balance can be achieved by carefully choosing the size of the
architecture and tuning the hyperparameters.

Evaluation

Optimizing- Sorting Algorithms
Ø The main idea is to generate an algorithm that can dynamically select the fastest version of the

algorithm at the run time based on the input data.

Ø There can be two steps involved:
1. Tuning each sorting algorithm
2. Learning the selection function

Ø Let’s consider learned sort as an example:
1. Find the best performing version of the Learned Sort – using empirical search – by trying out

multiple hyper parameters and choosing the one’s which gives the best performance.

2. Defining a set of heuristics that map input characteristics to the best version of algorithm –For
example: based on the input data we will select between in-place and cache-optimized versions of
the learned sort, by knowing which version adapts more to the input data and available memory.

Ø A machine learning algorithm called Composite sorting which uses genetic algorithm is built to
optimize the sorting algorithms.

Q. How are L2 and L3 cache affecting the mapping time?
L2 is the second level of cache memory and L3 is third and is larger than L2 which is usually shares
across multiple processor cores. We have to make sure that the data size is smaller than the cache size
and most importantly close to the processor which makes it easy and faster to access the data to
process unlike retrieving from the main memory which is much slower.

Q. What kind of modifications would need to be made to this model to handle dynamic data
(inserts, deletes, merges that are typically seen in databases)?
The training of CDF model is now training the entire input data at once in the beginning as we know
the data beforehand. But we can modify it by updating the CDF model after each insert or any update
happening and update training sets accordingly. Also, now a new CDF model is constructed every
time the input data changes. We can modify it by involving recalculation only for the slope and
intercept and not the entire model.

Q. Would it be possible to apply a classification model, or even a non-linear model, to this
problem?
Yes, we can apply non-linear models like Neural Networks or even multi layer Neural Networks like
Transformers to perform transformations on input data but these are computationally expensive to
train and complex. We may get performance improvement in certain scenarios and can directly predict
the CDF values but are too expensive to handle.

Q. Give some real-world examples of this system being used and how did they benefit from
it?
In theory Learned Sort achieves an average of 30% higher throughput than the next best algorithm
(IS4o) and 55% as compared to Radix Sort for larger data sizes. In real-world it is still a research project
and hasn’t been applied to any scenarios yet.

I thank Professor Dong Dai for this opportunity and Thank you everyone!!!

