
Instance-Optimized Data
Layouts for Cloud Analytics

Workloads
Authors: Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli,

Chi Wang, Yinan Li, Ying Li, Donald Kossmann, Johannes Gehrke, Tim Kraska

Presented By:

Soumen Sahoo

INTRODUCTION

• Modern cloud servers
rely on techniques to
reduce data movement
and access.

• Per-block metadata,
which is often cached in
memory, is used to avoid
accessing blocks.

INTRODUCTION

• Zone maps, a form of per-block metadata, stores the minimum and
maximum values.

• Zone maps have low maintenance costs and are also potentially
useful.

• Z-order is a multi-dimensional sorting technique which uses the idea
of sorting through multiple columns.

• Instance-optimized data layouts was defined as a measure to
overcome the traditional data layout techniques that required to
select columns manually.

INTRODUCTION

• Instance-optimized layouts learn a special blocking scheme that
further improves the blocking speed.

• With the currently existing instance optimized layouts, it is only
possible to optimize a single table.

• But analytics workloads contain many tables to deal with which
makes the layouts inefficient.

• So, to be able to optimize multiple tables, MTO (Multi-Table
Optimizer) was introduced which is a framework that can be used to
optimize the whole datasets.

Current Blocking Scheme

Q-d Tree

• Existing Instance-Optimized data layout designed for single tables.
• Initially designed to modify the block assignment strategy for a given

query workload.
• Q-d tree works as follows:

(i) I/P is a table and workload of queries which is used to construct a
decision tree.

(ii) Use the q-d tree to assign table to blocks.
(iii) During the time of query execution, use the q-d tree to

determine which blocks are to be used by the query to access.

OVERVIEW OF MTO

• MTO (Multi Table Optimizer) creates instance optimized data layouts
that can be used to optimize multi-table datasets.

• Goal of the optimizer is to learn the instance-optimized layouts that
can help to maximize the block skipping.

•

MTO OVERVIEW – SIDEWAYS
INFORMATION PASSING

• The currently existing single table
layouts do not use SIP (Sideways
Information Passing)

• As per the figure, table A will have
elements already present in the
block.

MTO
OVERVIEW –
SIDEWAYS
INFORMATION
PASSING
• Table 1 shows the different

terms that are used for the joint-
induced predicate as shown.

MTO
WORKFLOW

• The workflow, as shown in the
figure, has 2 optimizations (Offline
optimization and Online query
execution)

• In the offline optimization, MTO
takes multi-table dataset and
query workload as input and uses
it to generate one q-d tree per
table.

MTO WORKFLOW – OFFLINE OPTIMIZATION

MTO
WORKFLOW
– ONLINE
QUERY
EXECUTION

MTO ALGORITHMS – JOIN INDUCED PREDICATES

MTO ALGORITHMS – JOIN INDUCED
PREDICATES

Some rules to be followed to decide which predicates can be induced:
• Predicates can be induced in both the directions to induce by using

inner joins.
• In order to perform self join, MTO creates a copy of the table which

makes two different sets and then uses it to
• As per the mentioned query, the predicate A.X<100 induces into the

remainder of the query by using the inner join A.KEY = B.KEY.
• Like simple cuts which are present in q-d tree, join induced cuts use

the idea of navigating the records and queries in the tree.

SCALABILITY

• MTO optimizes by using uniform samples of the
given dataset rather than relying on the dataset
itself in order to reduce the time required for
optimizing the layouts.

• In order to optimize, MTO will create a sample
from fraction s(sampling rate) of the available
records for each table at random in a uniform way.

• MTO attaches a value called Cardinality
Adjustment (CA) to join induced cuts defined by
pow(s,d).

Dynamic Workloads

EVALUATION

• On commercial-cloud based analytics services, MTO achieves an
accuracy of 93% in reducing the accessing of blocks and there is also
75% reduction in query time.

• MTO is successful in achieving lower optimized time which results in
improved end-to-end performance.

• Evaluation was done on 3 datasets, Star Schema Benchmark(SSB),
TPC-H, TPC-DS with 60GB for SSB and 100 GB for TPC-H and TPC-DS.

•

EVALUATION

EVALUATION

• MTO was compared with two approaches, (i) Baseline, that sorts the
tables based on columns that are user tuned, (ii) STO, which is an
instance optimized layout approach that uses MTO algorithms but,
without join-induced predicates.

• MTO was evaluated based on certain metrics which are:
i. number of blocks which were accessed (approx. 500K records)
ii. fraction of the blocks that were accessed.
iii. End-to-end query runtime on Cloud DW.

EVALUATION

CONCLUSION

• The dominating costs for query processing in cloud-based data
analytics is the I/O that is required for accessing large data blocks.

• Per-block technique, as mentioned in the previous slides, is the
common technique for reducing I/O by block skipping but, their
effectiveness is dependent on how records are assigned.

QUESTIONS
Q-1: Can you describe the cardinality adjustment (CA) that MTO

use to get an accurate estimate of block size for the entire
dataset? (Atharva)

Q-2: When dealing with increased workloads and rising data
volumes, how does MTO compare to other approaches such as
STO and Baseline? (Atharva)

Q-3: Is this system used in the real world? (Tanusri)

QUESTIONS

• Q-4: How did the author evaluate the performance of this
system and what metrics did they use? (Shreya)

• Q-5: Do you think MTO could have utilized these different
information passing types to improve disk I/O?(Uzochi)

• Q-6: Could MTO take advantage of machine learning in any
aspect? If so, where do you think a machine learning model
would apply, and why? (Uzochi)

