Instance-Optimized Data
Layouts for Cloud Analytics
Workloads

Authors: Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli,
Chi Wang, Yinan Li, Ying Li, Donald Kossmann, Johannes Gehrke, Tim Kraska

Presented By:

Soumen Sahoo

Modern cloud servers
rely on techniques to
reduce data movement
and access.

Per-block metadata,
which is often cached in
memory, is used to avoid
accessing blocks.

INTRODUCTION

User Queries

SELECT AVG(PRICE)

FROM table

WHERE DATE between
'2020-01-10' and '2020-01-20'

SELECT AVG(QUANTITY)
FROM table
WHERE PRICE > 500

=

/ Compute Node

Zone Maps
Date 2020-01-01 2020-02-29
Price 1 1000
Quantity 1 980
Date 2020-03-01 2020-04-30
Price 1 980
Quantity 1 1000

col__|min___|max___|

Date 2020-05-01 2020-06-30

Price 1 990

@ﬁw 1 980

Ptr to Block

/ Cloud Storage \

INTRODUCTION

e Zone maps, a form of per-block metadata, stores the minimum and
maximum values.

e Zone maps have low maintenance costs and are also potentially
useful.

Z-order is a multi-dimensional sorting technique which uses the idea
of sorting through multiple columns.

Instance-optimized data layouts was defined as a measure to
overcome the traditional data layout techniques that required to
select columns manually.

INTRODUCTION

* Instance-optimized layouts learn a special blocking scheme that
further improves the blocking speed.

* With the currently existing instance optimized layouts, it is only
possible to optimize a single table.

* But analytics workloads contain many tables to deal with which
makes the layouts inefficient.

* So, to be able to optimize multiple tables, MTO (Multi-Table
Optimizer) was introduced which is a framework that can be used to
optimize the whole datasets.

Current Blocking Scheme

o Qd-tree ° Records Block Assignment
[cpu | mem | usr [P

958 126 ‘alice’

Lo [cou [mem | usr [NV

N "7 Data blocks 20 3G ‘bob’

e Queries Blocks to Access

SELECT * FROM table

WHERE cpu < 90 BO, B1, B2

SELECT * FROM table B1, B3
WHERE mem > 2G AND
usr = 'alice’

Figure 2: (1) Qd-tree defines blocks using cuts. (2) Qd-tree is
used offline to route records to the blocks they are stored in
and (3) is used online to determine which blocks need to be
accessed during query execution.

Q-d Tree

* Existing Instance-Optimized data layout designed for single tables.

* Initially designed to modify the block assignment strategy for a given
qguery workload.

e Q-d tree works as follows:

(i) I/P is a table and workload of queries which is used to construct a
decision tree.

(ii) Use the g-d tree to assign table to blocks.

(iii) During the time of query execution, use the g-d tree to
determine which blocks are to be used by the query to access.

OVERVIEW OF MTO

« MTO (Multi Table Optimizer) creates instance optimized data layouts
that can be used to optimize multi-table datasets.

e Goal of the optimizer is to learn the instance-optimized layouts that
can help to maximize the block skipping.

MTO OVERVIEW — SIDEWAYS

INFORMATION PASSING

w/o Sideways Information Passing w/ Sideways Information Passing

Table A Table B Properties satisfied Table B Properties satisfied
by records in block by records in block
. e . - - - ~B.y >200and A.x < 120 if joined with A
° The Currently eX|St|ng S|ng|e table (Table As lone block is always accessed) - By > 200 I:] k g
. | By>
layouts do not use SIP (Sideways | [] -By>200and Ax>=120if joined with A
Information Passing) deaiblock __ [
. . - accessed data block |: S
* As per the figure, table A will have , C] =
. rec9rdsm B that - By<= 200 _ By<= 200
elements already present in the — Saﬁ'SfyA'XthA] ==
when joined wit |
block. 1] —

Figure 3: By taking advantage of sideways information
passing to optimize the data layout, we can increase block
skipping. Only blocks in the shaded regions are read.

MTO
OVERVIEW —
SIDEWAYS
INFORMATION
PASSING

Table 1 shows the different
terms that are used for the joint-

induced predicate as shown.

Table 1: Join-induced predicate terminology example.

Term Definition Running Example
Simple predicate ~ Predicate over one table A.X <100
Join-induced Predicate over columns in A.BKEY IN (SELECT B.BKEY
predicate/cut multiple tables, composed of FROM B WHERE B.CKEY IN (
nested semi-join subqueries SELECT C.CKEY FROM C
WHERE C.Z > 200))
Literal cut Result of evaluating subqueries A.BKEY IN (3, 14, 159)

Source table
Target table
Source cut
Induction path

Induction depth

in a join-induced cut

Table with the original predicate
Table whose predicate is induced
Source table’s predicate

List of tables and join columns
connecting source to target
Length of the induction path

C
A
C.Z > 200

C—CKEYB—BKEYA

2

MTO
WORKFLOW

The workflow, as shown in the
figure, has 2 optimizations (Offline
optimization and Online query
execution)

In the offline optimization, MTO
takes multi-table dataset and
guery workload as input and uses
it to generate one g-d tree per
table.

Query Workload
- \ Offline
e Optimization
Dataset (Sec3.2.1) Qd-tree per table

FEN ® LA el
H)OO) 2| L gl | T

a Online Query //
Query - =) Execution Query .

(Sec3.2.2) —) Results

Figure 4: (1) In offline optimization, MTO produces a layout
(a qd-tree per table) given a dataset and query workload. (2)
MTO assigns records to blocks and stores them. (3) In online
query execution, MTO skips blocks based on the layout.

MTO WORKFLOW — OFFLINE OPTIMIZATION

Database
[Jesimplecst []=Joininduced cut)
Query Workload Candidate Cuts D D D Qd-trees
o Ax<100
et ©) @ o
Akey in (= :
* SELECT B.key Construction > L L S
i;gﬁ Ac o; nt(*) FROM B == Akeyin (1,4, 9)} Alg. -
5 WHEREBy>200)) | N il

WHERE A.key = B.key
and A.x < 100 and B.y > 200

SELECT ... ° { By>200 | °
B.keyin (° ‘ R Qd-tree r- ey
SRLECT:x SEECTAKSY p Bheyin (3,14,159) construction NI
8 Alg. e [

WHERE A.x < 100)
Figure 5: MTO optimization uses the query workload and
dataset to create one qd-tree per table.

Qd-tree for Table B

1
= Simple cut/predicate i | = Data block
= Join-induced cut /predicate i | = Accessed block
ffffff : By >200
User Query Predicates on Table B / —
Y o= N

/ ° B.key in (l B2 i
I\/I TO SELECT count(*) =) | By>200 SELECT A.key i |
FROMA, B FROMA |

WHERE A.key = B.key WHERE A.x < 100)

WORKFLOW e O e 0
and By >200 SELECT A.key Y \ %
ONLINE it

QU E RY Figure 6: At query time, MTO uses the per-table qd-trees
to determine which blocks to access from each table. This

E X E C U T | O N query only needs to read block 1 from Table B.

WHERE A.x > 200)

MTO ALGORITHMS — JOIN INDUCED PREDICATES

SELECT AVG(A.Z) FROM A WHERE A.X < 100 AND A.Y < (
SELECT COUNT (*) FROM B WHERE A.KEY =B.KEY AND B.Z > 200)

MTO ALGORITHMS — JOIN INDUCED
PREDICATES

Some rules to be followed to decide which predicates can be induced:

* Predicates can be induced in both the directions to induce by using
inner joins.

* In order to perform self join, MTO creates a copy of the table which
makes two different sets and then uses it to

* As per the mentioned query, the predicate A.X<100 induces into the
remainder of the query by using the inner join A.KEY = B.KEY.

* Like simple cuts which are present in g-d tree, join induced cuts use
the idea of navigating the records and queries in the tree.

SCALABILITY

MTO optimizes by using uniform samples of the
given dataset rather than relying on the dataset
itself in order to reduce the time required for
optimizing the layouts.

In order to optimize, MTO will create a sample
from fraction s(sampling rate) of the available

records for each table at random in a uniform way.

MTO attaches a value called Cardinality
Adjustment (CA) to join induced cuts defined by
pow(s,d).

Full Dataset

Qd-tree for Table B

Table A Table B
(10M rows) || (100M rows) o s
7 P Optimization
Optimization T o
w/ Full Dataset : 2| (10M rows)]
&J Ps Join-induced
(1Mrows) | | (10M rows) predicate
Simple Predicates
Optimization Pa-B
10% Sampled Dataset = r
w/o cardinality || # rows: 100K] #rows: 9.9M £
adjustment | Est.#rowsonfull data: 1M | | Est. # rows on full data: 99M |
Optimization T 7
w/ Sampled Dataset '[[100‘:(7:\!45) Ll
Join-induced 1
. . P w/ cardinality |\ pgjusted # rows: 1M | Adjusted # rows:9M |
Simple Predicates adjustment | Est. # rows on full data: 10M | | Est. # rows on full data: 90M |

Figure 7: Cardinality adjustment allows MTO to achieve accu-
rate block size estimates when optimizing based on a dataset
sample, which improves the quality of the resulting layout.

Dynamic Workloads

Frac. Data Re-opt. Frac. Subtrees
Reorganized Time(min) Consideredin Re-opt.
g=100 |0 0 0
q=200 0.370 9.81 0.031
q=500 0.841 25.0 0.163
q=1000 | 0.893 17.3 0.084
g=00 1.0 2.48 N/A

Table 5: MTO behavior after workload shift.

EVALUATION

* On commercial-cloud based analytics services, MTO achieves an
accuracy of 93% in reducing the accessing of blocks and there is also
75% reduction in query time.

e MTO is successful in achieving lower optimized time which results in
improved end-to-end performance.

* Evaluation was done on 3 datasets, Star Schema Benchmark(SSB),
TPC-H, TPC-DS with 60GB for SSB and 100 GB for TPC-H and TPC-DS.

EVALUATION

s MTO B STO B STO w/diPs I Baseline Baseline w/diPs

(a) Blocks Accessed in Simulation » (b) Frac. Blocks Accessed in Cloud DW (c) Query Time in Cloud DW
© 1.00 1 415 2
f g = 1.00
® 0.75 R, ray
) 310 8 0.75 ~
] 2 5
£ 0.50 - g g 0.50 -
® = 0.5 1 N
5 0.25 - 3 s
g = £ 0.251
5 3 o
Z 0.00 - 5 0.0 Z 0.00 -

SSB TPC-H TPC-DS = SSB TPC-H TPC-DS SSB TPC-H TPC-DS
Dataset Dataset Dataset

Figure 10: MTO achieves better overall workload performance than alternatives across datasets and metrics. Note that the
y-axes are normalized to the metric achieved by Baseline.

EVALUATION

e MTO was compared with two approaches, (i) Baseline, that sorts the
tables based on columns that are user tuned, (ii) STO, which is an
instance optimized layout approach that uses MTO algorithms but,
without join-induced predicates.

e MTO was evaluated based on certain metrics which are:

i. number of blocks which were accessed (approx. 500K records)
ii. fraction of the blocks that were accessed.

iii. End-to-end query runtime on Cloud DW.

EVALUATION

—&— vs.STO —B— vs. Baseline

(a) SSB (b) TPC-H (c) TPC-DS

1.00 «w 1.00 1.00
4] g
5 0.75 3075 5 0.75
E g El
B £ s
5 0.50 < 050 5 0.50
g] H
3 g 3
AE 0.25 oy 0.25 l‘s 0.25
S 8 S

0.00 © 0.00 0.00

0 10 20 30 40 10 0 10 20 30 40 -40 -20 0 20 40
Cloud DW Query Time Reduction (s) Cloud DW Query Time Reduction (s) Cloud DW Query Time Reduction (s)

Figure 11: Reduction in query runtimes achieved by MTO, relative to STO and Baseline. Different queries achieve different performance gains.

W= MTO mm STOwdPs mEm Baselne Baseline wis
- sTO STowsi Baseline widiPs

TPC-H: Breakdown by Query Type

Normalized Blocks Accessed

Q1 Q14 Q6 Q4 Qs

Figure 12: MTO has the most performance advantage over
STO and Baseline on queries with selective filters over joined
tables, like Q4 and Q5.

SSB TPC-H TPC-DS
MTO
Optimization time (min) 0195 367 0619
Data sample rate used foropt. 0.01 0.03 001
Routing time (min) 154 580 350
Total offline time (min) 173 9.47 4.12
STO
Optimization time (min) 00213 0697 00611
Data sample rate used foropt. 0.003 ~ 0.0003 0.1
Routing time (min) 0360 0978 0771
Total offline time (min) 0381 168 0832

Table 3: Offline optimization times for Fig. 10.

CONCLUSION

 The dominating costs for query processing in cloud-based data
analytics is the 1/O that is required for accessing large data blocks.

* Per-block technique, as mentioned in the previous slides, is the
common technique for reducing 1/0O by block skipping but, their
effectiveness is dependent on how records are assigned.

QUESTIONS

Q-1: Can you describe the cardinality adjustment (CA) that MTO
use to get an accurate estimate of block size for the entire
dataset? (Atharva)

Q-2: When dealing with increased workloads and rising data
volumes, how does MTO compare to other approaches such as
STO and Baseline? (Atharva)

Q-3: Is this system used in the real world? (Tanusri)

QUESTIONS

* Q-4: How did the author evaluate the performance of this
system and what metrics did they use? (Shreya)

* Q-5: Do you think MTO could have utilized these different
information passing types to improve disk 1/0?(Uzochi)

* Q-6: Could MTO take advantage of machine learning in any
aspect? If so, where do you think a machine learning model
would apply, and why? (Uzochi)

