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INTRODUCTION

• Modern cloud servers 
rely on techniques to 
reduce data movement 
and access.

• Per-block metadata, 
which is often cached in 
memory, is used to avoid 
accessing blocks.  



INTRODUCTION

• Zone maps, a form of per-block metadata, stores the minimum and 
maximum values. 

• Zone maps have low maintenance costs and are also potentially 
useful.

• Z-order is a multi-dimensional sorting technique which uses the idea 
of sorting through multiple columns.

• Instance-optimized data layouts was defined as a measure to 
overcome the traditional data layout techniques that required to 
select columns manually. 



INTRODUCTION

• Instance-optimized layouts learn a special blocking scheme that 
further improves the blocking speed.

• With the currently existing instance optimized layouts, it is only 
possible to optimize a single table.

• But analytics workloads contain many tables to deal with which 
makes the layouts inefficient.

• So, to be able to optimize multiple tables, MTO (Multi-Table 
Optimizer) was introduced which is a framework that can be used to 
optimize the whole datasets.



Current Blocking Scheme



Q-d Tree

• Existing Instance-Optimized data layout designed for single tables.
• Initially designed to modify the block assignment strategy for a given 

query workload.
• Q-d tree works as follows:

(i) I/P is a table and workload of queries which is used to construct a    
decision tree.

(ii) Use the q-d tree to assign table to blocks.
(iii) During the time of query execution, use the q-d tree to 

determine which blocks are to be used by the query to access.



OVERVIEW OF MTO

• MTO (Multi Table Optimizer) creates instance optimized data layouts  
that can be used to optimize multi-table datasets.

• Goal of the optimizer is to learn the instance-optimized layouts that 
can help to maximize the block skipping.

•



MTO OVERVIEW – SIDEWAYS 
INFORMATION PASSING

• The currently existing single table 
layouts do not use SIP (Sideways 
Information Passing)

• As per the figure, table A will have 
elements already present in the 
block.



MTO 
OVERVIEW –
SIDEWAYS 
INFORMATION 
PASSING
• Table 1 shows the different 

terms that are used for the joint-
induced predicate as shown. 



MTO 
WORKFLOW

• The workflow, as shown in the 
figure, has 2 optimizations (Offline 
optimization and Online query 
execution)

• In the offline optimization, MTO 
takes multi-table dataset and 
query workload as input and uses 
it to generate one q-d tree per 
table. 



MTO WORKFLOW – OFFLINE OPTIMIZATION 



MTO 
WORKFLOW 
– ONLINE 
QUERY 
EXECUTION



MTO ALGORITHMS – JOIN INDUCED PREDICATES



MTO ALGORITHMS – JOIN INDUCED 
PREDICATES

Some rules to be followed to decide which predicates can be induced:
• Predicates can be induced in both the directions to induce by using 

inner joins.
• In order to perform self join, MTO creates a copy of the table which 

makes two different sets and then uses it to 
• As per the mentioned query, the predicate A.X<100 induces into the 

remainder of the query by using the inner join A.KEY = B.KEY. 
• Like simple cuts which are present in q-d tree, join induced cuts use 

the idea of navigating the records and queries in the tree.   



SCALABILITY 

• MTO optimizes by using uniform samples of the 
given dataset rather than relying on the dataset 
itself in order to reduce the time required for 
optimizing the layouts.

• In order to optimize, MTO will create a sample 
from fraction s(sampling rate) of the available 
records for each table at random in a uniform way.

• MTO attaches a value called Cardinality 
Adjustment (CA) to join induced cuts defined by 
pow(s,d). 



Dynamic Workloads



EVALUATION

• On commercial-cloud based analytics services, MTO achieves an 
accuracy of 93% in reducing the accessing of blocks and there is also 
75% reduction in query time.

• MTO is successful in achieving lower optimized time which results in 
improved end-to-end performance.

• Evaluation was done on 3 datasets, Star Schema Benchmark(SSB), 
TPC-H, TPC-DS with 60GB for SSB and 100 GB for TPC-H and TPC-DS.

•



EVALUATION



EVALUATION

• MTO was compared with two approaches, (i) Baseline, that sorts the 
tables based on columns that are user tuned, (ii) STO, which is an 
instance optimized layout approach that uses MTO algorithms but, 
without join-induced predicates.

• MTO was evaluated based on certain metrics which are:
i. number of blocks which were accessed (approx. 500K records)
ii. fraction of the blocks that were accessed.
iii. End-to-end query runtime on Cloud DW.



EVALUATION



CONCLUSION

• The dominating costs for query processing in cloud-based data 
analytics is the I/O that is required for accessing large data blocks.

• Per-block technique, as mentioned in the previous slides, is the 
common technique for reducing I/O by block skipping but, their 
effectiveness is dependent on how records are assigned. 



QUESTIONS
Q-1: Can you describe the cardinality adjustment (CA) that MTO 

use to get an accurate estimate of block size for the entire 
dataset? (Atharva)

Q-2: When dealing with increased workloads and rising data 
volumes, how does MTO compare to other approaches such as 
STO and Baseline? (Atharva)

Q-3: Is this system used in the real world? (Tanusri)



QUESTIONS

• Q-4: How did the author evaluate the performance of this 
system and what metrics did they use? (Shreya)

• Q-5: Do you think MTO could have utilized these different 
information passing types to improve disk I/O?(Uzochi)

• Q-6: Could MTO take advantage of machine learning in any 
aspect? If so, where do you think a machine learning model 
would apply, and why? (Uzochi)


