
A Machine Learning Approach to
Mapping Streaming Workloads to
Dynamic Multicore Processors

Published at LCTES 2016

Authors: Paul-Jules Micolet (University of Edinburgh, UK)

Presenter: Wangjiaxuan Xin

March 9, 2023

https://www-users.cselabs.umn.edu/Spring-2019/csci8980/papers/mapping_streaming.pdf
https://www-users.cselabs.umn.edu/Spring-2019/csci8980/papers/mapping_streaming.pdf
https://www-users.cselabs.umn.edu/Spring-2019/csci8980/papers/mapping_streaming.pdf

Introduction

In recent years a shift has occurred towards heterogeneity(e.g. ARM
big.LITTLE) and reconfigurability.

Dynamic Multicore Processors (DMPs) bridge the gap between fully
reconfigurable processors and homogeneous multicore systems

Dynamic multicore processors allow cores to compose (or fuse) together
into larger logical cores to accelerate each single thread.

Some Features For DMPs

In this paper a dynamic
multicore processor allows
cores to compose their
execution resources, register
files and private L1 caches to
create logical processors to
accelerate a single thread.

Figure 1: High-level view of a dynamic multicore
processor considered in this paper.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/3-Figure1-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/3-Figure1-1.png

Motivation

Figure 2: Distribution of the runtime for Beamformer
resulting from an exhaustively exploration of the
hardware/software co-design space. The application
has been partitioned into different number of threads
and core compositions.

This shows that finding the right
combination of thread mapping and
core composition is critical since a
wrong choice often leads to the
sub-optimal performance (best
around 275,000 cycles and majority
around 525,000 cycles, Benchmark:
Beamformer).

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png

Overview

Figure 3: Description of the workflow. Two distinct machine learning models are used to predict the optimal thread
partitioning and core composition based on static code features.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure3-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure3-1.png

Design Space

Use 16 cores and assign core 0 to the main thread and for runtime management. This leaves 15 cores
available for each application. We restrict each core to running only a single thread (no preemptive
scheduling) which leads to a possible number of threads between 1 and 15:

Parameters Values
of cores in the processor 16
threads per application 1-15

cores per thread 1-15
sampled core compositions 100

our sampled space 1316
total sample space 32762

Table 1: Design space considered per application.

Sample Space

The best point found in the
sample space of 1,316 points
is at least within 5% of the real
best in the exhaustive space
with 95% confidence[1].

Figure 4: Statistical (plain line) and actual proximity
(dotted line)to best performance using a subset of the
sample space.

http://bebop.cs.berkeley.edu/pubs/thesis.pdf

Software Design: Thread Partitioning

We can estimate the optimal number of threads for a benchmark independently of the hardware
composition.

Figure 5: Performance as a function of the number of threads. The performance metric is number of cycles. Each
benchmark has the performance measured with cores composed and with threads mapped to a single core.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/5-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/5-Figure5-1.png

Hardware Design: Core Composition

For each of the threaded versions we ran the benchmark using on average 100 different compositions.
Curves represent the density distribution for different core compositions with modifying # of thread.

Figure 6: Distribution of Audiobeam performance when modifying the amount of threads and compositions.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/6-Figure6-1.png

Loop Unrolling

Figure 7: Distribution of FMRadio performance with modifying the amount of threads, core composition and
unrolling factor.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/6-Figure7-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/6-Figure7-1.png

Co-Design Space Best Results

Figure 8: Speedup obtained by choosing best core composition, best thread number and the combination of both
optimisations. The baseline for the speedup measurement is single core, single thread execution using O2
compiler optimisations. Higher is better.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/7-Figure8-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/7-Figure8-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/7-Figure8-1.png

Co-Design Space Best Results

without unrolling, finding the correct
number of threads gives a speedup of
1.92 compared to 1.33 when using
only core composition.

Whilst finding the optimal thread
mapping is better than the best
composition, the best performance is
always obtained through a
combination of both optimizations.

There is a 3x benefit (overall) by
automating the partitioning of both
the software (threads) and hardware
(cores).

Features Extraction

Figure 9: The ten highest correlating features with the
best number of threads for 1000 synthetic
benchmarks.

In StreamIt the term multiplicity
references the number of times a filter
will have to execute in a time slice
when the graph is in a steady state.

Unconditionally executed blocks
represent sets of operations in a filter
that will always execute.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure9-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure9-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure9-1.png

Features Extraction

Figure 10: The ten highest correlating features with the
optimal number of cores.

Overall there are no features distinct to
StreamIt, such as pipelines or splitjoins
that correlate highly with the optimal
number of cores.

We can thus infer that the optimal
number of cores is independent of the
structure of a StreamIt program.
Instead, it is more dependent on the
amount of computation.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure11-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure11-1.png

K-Nearest Neighbor Model for Thread Partitioning

Given a new application to predict, the kNN classifier determines the k
closest generated applications in terms of the features. The distance between
the features is measured using the Euclidean for each application. K=7 in
this study.

Once the set of k nearest neighbors has been identified, the model simply
averages the best number of threads for each of the k nearest neighbors to
make a prediction.

Linear Regression Model for Core Composition

Figure 11: Optimal number of cores in relation to the three highest correlating features. The maximum number of
cores plateaus on the right hand side as this is the maximum possible amount.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/9-Figure10-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/9-Figure10-1.png

Evaluation

Figure 12: Performance of our machine learning model
against the best execution from random sampling. The
baseline for the speedup measurement is single core,
single thread execution using O2 compiler
optimisations. Higher is better.

Average speedup for ML: 2.6

16% smaller than the average of the
best found (3.1).

At least within 16% of the total best.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png

Results Comparison

Q & A

1.If fine-grained composition can allow more optimisation, why haven’t we used that?

Types of DMPs such as WidGET and Sharing Architecture are fine-grained level of composition, where
cores can be created out of arithmetic logical units, floating point units and memory units and other
different components on the processor. This requires high complexity for the optimization problem.

2.Is K-fold cross validation more useful than Leave-one-out cross-validation?

Actually LOOCV is a special type of K-fold cross validation, where k = # of samples.But deciding
which one is better is a trade-off between bias and variance, as well as computation resources available
and the cost of mis-classification. That depends on the specific problem. LOOCV is computationally
expensive compared with K-fold cross-validation. LOOCV is typically for small data-sets and K-fold
for relatively large data-sets.

Q & A

3.Is there any other streaming language that you are aware of which can be used instead of
StreamIt which can produce similar or better results?

The choice of language or framework will depend on the specific requirements of the application, such as
performance, scalability, ease of use, and available resources. For example, the functional programming
language for signal processing and control applications, Signal. It supports both continuous-time and
discrete-time signal processing, making it a good fit for a wide range of streaming applications.

4.What is the importance and effect of predicting the optimal number of threads before predicting
optimal core composition?

The model needs to determine the Thread Level Parallelism (TLP) first, using extrated features and uses
that information for thread partitioning, and for deciding the best core composition by finding the
Instruction Level Parallelism in each thread.

Q & A

5.How important is unrolling of the loops and what is the general trend
observed while performing it?

Unrolling may increase the degree of parallelism which is advantageous to a wider
fused processor. Unrolling generally increases the speed-up for applications.

6.Briefly explain the loop unrolling.

Loop unrolling is a compiler optimization technique that involves duplicating the
body of a loop multiple times to reduce the overhead of loop control and increase
instruction-level parallelism.

Q & A

7.What is the prevalence of StreamIt in the real world? How popular is it? Is it likely the only or
one of the only languages of its type to be used in the future? If so, why?

StreamIt is a programming language specifically designed for programming stream-processing
applications. Hard to quantify its popularity. While StreamIt was one of the earliest stream processing
programming languages, there have been other languages and frameworks that have emerged in recent
years, such as Apache Flink, Apache Kafka Streams, and Apache Spark Streaming.

8.Do we have any real-world applications that have successfully utilized Dynamic multi core
processors?

Scientific simulations: Many scientific simulations require intensive computation and can benefit from
the parallel processing capabilities of dynamic multi-core processors. For example, simulations in fields
such as physics, chemistry, and engineering can be accelerated by using dynamic multi-core processors.

Q & A

9.Is dynamic processor mentioned here is efficient than others like GPU?

The most efficient architecture for a given application depends on a variety of factors such as the nature
of the computation, the amount of data, and the available hardware resources.

Dynamic multi-core processors are generally more versatile than GPUs and can handle a wider range of
computations, including those that are not well-suited for parallel processing(Recursive algorithms).
Additionally, dynamic multi-core processors can dynamically allocate resources to different tasks, which
can help to optimize processing efficiency and reduce wasted resources.

However, for tasks that require a high degree of parallelism, such as machine learning and graphics
rendering, GPUs may be more efficient due to their highly parallelized architecture and specialized
hardware.

Q & A

10.Why do streaming programming languages treat programs as graphs?

Streaming applications often involve a large number of data-processing tasks that
need to be performed in a particular order. This order can be represented as a graph,
where the tasks are the nodes, and the dependencies between tasks are the edges.

In a streaming program, data is continuously processed as it arrives, rather than
being processed all at once like in batch processing. This means that the program
needs to be able to handle data in real-time and adapt to changes in the data stream.
Using a graph to represent the program allows for greater flexibilityin handling data
as it flows through the program, as the graph can be dynamically modified to adapt
to changes in the data stream.

End-to-end Deep Learning of
Optimization Heuristics

Published at PACT 2017

Authors: Chris Cummins (University of Edinburgh, UK)

Presenter: Wangjiaxuan Xin

March 9, 2023

https://pure.manchester.ac.uk/ws/portalfiles/portal/157726986/PACT17_DeepHeuristic.pdf
https://pure.manchester.ac.uk/ws/portalfiles/portal/157726986/PACT17_DeepHeuristic.pdf
https://github.com/ChrisCummins/paper-end2end-dl

Introduction

Deep neural networks should be able to automatically extract features from source code.

Figure 1: Building a predictive model. The model is originally trained on performance data and features extracted from
the source code and the runtime behavior. We propose bypassing feature extraction, instead learning directly over raw
program source code.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8090482/8091202/8091247/8091247-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8090482/8091202/8091247/8091247-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8090482/8091202/8091247/8091247-fig-1-source-large.gif

Current Limitations

Figure 2: Current State of Practice.

https://speakerdeck.com/chriscummins/end-to-end-deep-learning-of-optimization-heuristics-pact-17

Language Model

Figure 3: DeepTune architecture. Code properties are
extracted from source code by the language model. They
are fed, together with optional auxiliary inputs, to the
heuristic model to produce the final prediction.

Auxiliary Input: Provide dynamic
information which cannot be statically
determined from the program code.

Embedding: Given a vocabulary size
V and embedding dimensionality D, an
embedding matrixWE ∈ RV×D is
learned during training, so that an
integer encoded sequences of tokens
t ∈ NL is mapped to the matrix
T ∈ RL×D. Here the embedding
dimensionality D = 64.

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/3-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/3-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/3-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/3-Figure2-1.png

Heuristic Model

LSTMs: Two-layer implementation
receives a sequence of embedding
vectors, and returns a single output
vector, characterizing the entire
sequence.

Two-layer FNN: The first layer consists
of 32 neurons with ReLU and the
second layer consists of a single neuron
for each possible heuristic decision,
with Sigmoid Activation Function.

Training the Network

Training Methods: Stochastic
Gradient Descent(SGD), using the
Adam optimizer.

Loss Function:
Θ = argmin

Θ

1
n

∑n
i=1 L(Xi,Θ)

OpenCL Heterogeneous Mapping

Figure 4: Features used by Grewe et al. to predict heterogeneous device mappings for OpenCL kernels.

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/6-Table1-1.png

OpenCL Thread Coarsening Factor

Figure 5: Predicting coarsening factor (CF) of OpenCL
kernels. Magni et al. reduce the multilabel classification
problem to a series of binary decisions,by iteratively
applying the optimization and computing new feature
vectors.

Thread Coarsening: Optimization for
parallel programs in which the
operations of two or more threads are
fused together.

SOTA: They implement an iterative
heuristic which determines whether a
given program would benefit from
coarsening. If yes, then the program is
coarsened, and the process repeats,
allowing further coarsening.

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png

Neural Network Configuration

Figure 6: DeepTune neural networks, configured for (a) heterogeneous mapping, and (b) thread coarsening factor. The
design stays almost the same regardless of the optimization problem. The only changes are the extra input for (a) and
the number of nodes in the output layer.

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/6-Figure4-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/6-Figure4-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/6-Figure4-1.png

Parameters Comparison

Figure 7: The size and number of parameters of the
DeepTune components of Figure 4, configured for
heterogeneous mapping (HM) and coarsening factor
(CF).

Two Models' Similarity

The only difference between our
network design is the auxiliary inputs
for Case Study A and the different
number of optimization decisions.

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Table5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Table5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Table5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Table5-1.png

Performance Evaluation

Figure 8: Experiments Results Evaluation in two tasks[1].

https://speakerdeck.com/chriscummins/end-to-end-deep-learning-of-optimization-heuristics-pact-17?slide=27

Transfer Learning

Figure 9: Transfer Learning Approach[2]

Extract the language model, including the
Embedding, LSTM_1, and LSTM_2
layers, trained for the heterogeneous
mapping task and transfer it over to the new
task of thread coarsening.

Since DeepTune keeps the same design for
both optimization problems, this is as simple
as copying the learned weights of the three
layers. Then train the model as normal.

https://speakerdeck.com/chriscummins/end-to-end-deep-learning-of-optimization-heuristics-pact-17?slide=29

Transfer Learning Results

Figure 10: Transfer Laearning Results[3].

https://speakerdeck.com/chriscummins/end-to-end-deep-learning-of-optimization-heuristics-pact-17?slide=31

Internal State Visualization

	Introduction
	Motivations
	Methodology
	Design Space Exploration
	Machine Learning Models
	Results
	Q A
	Introduction
	DeepTune
	Applications on two tasks
	Results
	DeepTune Internal Activation State

