A Machine Learning Approach to
Mapping Streaming Workloads to
Dynamic Multicore Processors

Published at LCTES 2016

Authors: Paul-Jules Micolet (University of Edinburgh, UK)

Presenter: Wangjiaxuan Xin

March 9, 2023

cUN/VfﬂSITV OF NORTH CAROLINA

https://www-users.cselabs.umn.edu/Spring-2019/csci8980/papers/mapping_streaming.pdf
https://www-users.cselabs.umn.edu/Spring-2019/csci8980/papers/mapping_streaming.pdf
https://www-users.cselabs.umn.edu/Spring-2019/csci8980/papers/mapping_streaming.pdf

Introduction

In recent years a shift has occurred towards heterogeneity(e.g. ARM
big. LITTLE) and reconfigurability.

Dynamic Multicore Processors (DMPs) bridge the gap between fully
reconfigurable processors and homogeneous multicore systems

Dynamic multicore processors allow cores to compose (or fuse) together
into larger logical cores to accelerate each single thread.

nUN/VfﬂSITV OF NORTH CAROLINA

Some Features For DMPs

In this paper a dynamic

. P P e
multicore processor allows P P uuuu 4 Decompose
cores to compose their PREPE ool ol \
execution resources, register EBEFD =]/ SRR =22
. P P 2122 e L2 o2 e
files and private L1 caches to FOEED wlululul By Bg) tlulule
create logical processors to ——w _ [PILrlCEEE
accelerate a single thread. Compose” ¢ ¢ wuuw
Cores PN

Figure 1: High-level view of a dynamic multicore
processor considered in this paper.

nUN/VfﬂSITV OF NORTH CAROLINA

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/3-Figure1-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/3-Figure1-1.png

Motivation

This shows that finding the right
combination of thread mapping and
. core composition is critical since a
g wrong choice often leads to the

. sub-optimal performance (best

B around 275,000 cycles and majority

around 525,000 cycles, Benchmark:
Beamformer).
Figure 2: Distribution of the runtime for Beamformer
resulting from an exhaustively exploration of the
hardware/software co-design space. The application

has been partitioned into different number of threads
and core compositions.

cUN/VfﬂSITV OF NORTH CAROLINA

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure2-1.png

Overview

Unroll -
Partitioned
Loops N Thresded | Ci+
lew StreaMIT | Compiler
StreaMIT StreaMIT Code Executable
Code Code C++
Code

Features

Linear

Core
topol
og&

Estimation

Machine Leaming Models

Figure 3: Description of the workflow. Two distinct machine learning models are used to predict the optimal thread

partitioning and core composition based on static code features.

UNIVERSITY OF NORTH CAROLINA

TTE

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure3-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/4-Figure3-1.png

Design Space

Use 16 cores and assign core 0 to the main thread and for runtime management. This leaves 15 cores
available for each application. We restrict each core to running only a single thread (no preemptive
scheduling) which leads to a possible number of threads between 1 and 15:

Parameters

Values

of cores in the processor
threads per application
cores per thread

16
1-15
1-15

sampled core compositions
our sampled space
total sample space

100
1316
32762

nUN/VfﬂSITV OF NORTH CAROLINA

Table 1: Design space considered per application.

Sample Space

The best point found in the

sample space of 1,316 points

is at least within 5% of the real L

best in the exhaustive space L A pninan:
with 95% confidence[1]. RARSEEE] RNERGRY] NRNRNE) ENEHURE] RURNRS

Proximity To Best

MatmulBlosk RadiSort

LLm L_L

Sample Size

Figure 4: Statistical (plain line) and actual proximity
i performance using a subset of the
UNIVERSITY OF NORTH CAROLINA

TTE

http://bebop.cs.berkeley.edu/pubs/thesis.pdf

Software Design: Thread Partitioning

We can estimate the optimal number of threads for a benchmark independently of the hardware
composition.

s -y
Audiooeam Beamfcrmer BioncSor: BuodleSor: CFAR.
] I : 5 i
ChameNocha FFTS " FeT8 FirerBank
4 2 LR - L LR -]
FMRaﬂn InsariionSort RadixSert

e, N o
Trreac Count
he

performance metric is number of cycles. Each
d to a single core.

U UNIVERSITY OF NGRTH CARGLINA

TTE

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/5-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/5-Figure5-1.png

Hardware Design: Core Composition

For each of the threaded versions we ran the benchmark using on average 100 different compositions.
Curves represent the density distribution for different core compositions with modifying # of thread.

NIVERSITY OF NORTH CAROLINA

CHARLOTTE

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/6-Figure6-1.png

Loop Unrolling

BB

S@ 6 3208 sy

4.

Cycles

opumisation [Z]os[Flozs unrotings [Fvzrunroiing 1 Il oz unvotingus

Figure 7: Distribution of FMRadio performance with modifying the amount of threads, core composition and
rolling factor.

UNIVERSITY OF NORTH CAROLINA

TTE

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/6-Figure7-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/6-Figure7-1.png

Co-Design Space Best Results

Mtibear Banfomsr BlowcSt BubGSol CFR mellomd T L} 6 Flanc AR Ao nsofionor NatwhBlook it eomsiclicn

1 Compiler Optimisationl Urralirgl™ Viihcut.nrc!ing

speadup

| | - - I-.I I l- -
o0t bk o I S O e o

Surfesdyrfurdurdurdyr e durfurdur durdurduzdyrdur

WEE WEE UCE WEE WEF WEE WCE WEE WEE WEE U Ch Wk Wi WER WEE

CQ0 oo ro0 o0 o000 x00Co0x00xo0 T 00 Q00000 xOoo

100100 100100 00 00 100 10000 100 1 08 106 100 $0@ 108

r 3 3 3 F 3 r 3 3 3 3 3 F 3 F
Typzs

t core composition, best thread number and the combination of both
ﬁ isssingle core, single thread execution using 02
U iTY O0F NGRTH CAROLINA

CHARLOTTE

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/7-Figure8-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/7-Figure8-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/7-Figure8-1.png

Co-Design Space Best Results

without unrolling, finding the correct
RS —— number of threads gives a speedup of
| 1.92 compared to 1.33 when using
only core composition.

N | | Whilst finding the optimal thread
- N . mapping is better than the best
N l Ll I -.'J-l - I composition, the best performance is
1 II always obtained through a
: combination of both optimizations.

There is a 3x benefit (overall) by
automating the partitioning of both
the software (threads) and hardware
(cores).

UNIVERSITY OF NORTH CAROLINA

TTE

Features Extraction

c CHARLOT

Totaln. of fters in SpliJoin

UNIVERSITY OF NORTH CAROLINA

TE

In Streamlt the term multiplicity
references the number of times a filter
will have to execute in a time slice
when the graph is in a steady state.

Unconditionally executed blocks
represent sets of operations in a filter
that will always execute.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure9-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure9-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure9-1.png

Features Extraction

- e

Wt

.

Num. of Distinct

000 0.

Figure 10: The ten highest correlating features with the
Reber of cores.

cUN/VfﬂSITV OF NORTH CAROLINA

Overall there are no features distinct to
Streamlt, such as pipelines or splitjoins
that correlate highly with the optimal
number of cores.

We can thus infer that the optimal
number of cores is independent of the
structure of a Streamlt program.
Instead, it is more dependent on the
amount of computation.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure11-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/8-Figure11-1.png

K-Nearest Neighbor Model for Thread Partitioning

Given a new application to predict, the KNN classifier determines the k
closest generated applications in terms of the features. The distance between
the features is measured using the Euclidean for each application. K=7 in
this study.

Once the set of k nearest neighbors has been identified, the model simply
averages the best number of threads for each of the k nearest neighbors to
make a prediction.

cUN/VfﬂSITV OF NORTH CAROLINA

Linear Regression Model for Core Composition

o« o e
. . .
2 . . .
- - -
$
Iz o oo . .
2 .. .o .o
e o o o . .
e e - .
con o @ce oo
.o - .
. Dift. Betwoen Average and Smallest Unconditional Block

“Av. Size of Al Blocks Av. $iz6 of Unconditional Blocks:

Figure 11: Optimal number of cores in relation to the three highest correlating features. The maximum number of
cores plateaus on the right hand side as this is the maximum possible amount.

UNIVERSITY OF NORTH CAROLINA

TTE

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/9-Figure10-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/9-Figure10-1.png

Evaluation

Scheme
‘Sample Best
ML Perormance

M |i| ehila

Figure 12: Performance of our machine learning model
against the best execution from random sampling. The
baseline for the speedup measurement is single core,
single thread execution using O2 compiler
optimisations. Higher is better.

UNIVERSITY OF NORTH CAROLINA

TTE

Average speedup for ML: 2.6

16% smaller than the average of the
best found (3.1).

At least within 16% of the total best.

https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png
https://d3i71xaburhd42.cloudfront.net/58745b9b0a135c6e38fae646099144be75782f01/10-Figure12-1.png

Results Comparison

Scheme
Sample Best
ML Performance

Speedup

frl

Benchmarks

UNIVERSITY OF NORTH CAROLINA

Q&A
1.If fine-grained composition can allow more optimisation, why haven’t we used that?

Types of DMPs such as WidGET and Sharing Architecture are fine-grained level of composition, where
cores can be created out of arithmetic logical units, floating point units and memory units and other
different components on the processor. This requires high complexity for the optimization problem.

2.Is K-fold cross validation more useful than Leave-one-out cross-validation?

Actually LOOCYV is a special type of K-fold cross validation, where k = # of samples.But deciding
which one is better is a trade-off between bias and variance, as well as computation resources available
and the cost of mis-classification. That depends on the specific problem. LOOCYV is computationally
expensive compared with K-fold cross-validation. LOOCYV is typically for small data-sets and K-fold
for relatively large data-sets.

nUN/VfﬂSITV OF NORTH CAROLINA

Q&A

3.Is there any other streaming language that you are aware of which can be used instead of
StreamlIt which can produce similar or better results?

The choice of language or framework will depend on the specific requirements of the application, such as
performance, scalability, ease of use, and available resources. For example, the functional programming
language for signal processing and control applications, Signal. It supports both continuous-time and
discrete-time signal processing, making it a good fit for a wide range of streaming applications.

4.What is the importance and effect of predicting the optimal number of threads before predicting
optimal core composition?

The model needs to determine the Thread Level Parallelism (TLP) first, using extrated features and uses
that information for thread partitioning, and for deciding the best core composition by finding the
Instruction Level Parallelism in each thread.

cUN/VfﬂSITV OF NORTH CAROLINA

Q&A

5.How important is unrolling of the loops and what is the general trend
observed while performing it?

Unrolling may increase the degree of parallelism which is advantageous to a wider
fused processor. Unrolling generally increases the speed-up for applications.

6.Briefly explain the loop unrolling.
Loop unrolling is a compiler optimization technique that involves duplicating the

body of a loop multiple times to reduce the overhead of loop control and increase
instruction-level parallelism.

nUN/VfﬂSITV OF NORTH CAROLINA

Q&A

7.What is the prevalence of Streamlt in the real world? How popular is it? Is it likely the only or
one of the only languages of its type to be used in the future? If so, why?

Streamlt is a programming language specifically designed for programming stream-processing
applications. Hard to quantify its popularity. While StreamlIt was one of the earliest stream processing
programming languages, there have been other languages and frameworks that have emerged in recent
years, such as Apache Flink, Apache Kafka Streams, and Apache Spark Streaming.

8.Do we have any real-world applications that have successfully utilized Dynamic multi core
processors?

Scientific simulations: Many scientific simulations require intensive computation and can benefit from
the parallel processing capabilities of dynamic multi-core processors. For example, simulations in fields
such as physics, chemistry, and engineering can be accelerated by using dynamic multi-core processors.

nUN/VfﬂSITV OF NORTH CAROLINA

Q&A
9.Is dynamic processor mentioned here is efficient than others like GPU?

The most efficient architecture for a given application depends on a variety of factors such as the nature
of the computation, the amount of data, and the available hardware resources.

Dynamic multi-core processors are generally more versatile than GPUs and can handle a wider range of
computations, including those that are not well-suited for parallel processing(Recursive algorithms).
Additionally, dynamic multi-core processors can dynamically allocate resources to different tasks, which
can help to optimize processing efficiency and reduce wasted resources.

However, for tasks that require a high degree of parallelism, such as machine learning and graphics
rendering, GPUs may be more efficient due to their highly parallelized architecture and specialized
hardware.

UNIVERSITY OF NORTH CAROLINA

TTE

Q&A
10.Why do streaming programming languages treat programs as graphs?

Streaming applications often involve a large number of data-processing tasks that
need to be performed in a particular order. This order can be represented as a graph,
where the tasks are the nodes, and the dependencies between tasks are the edges.

In a streaming program, data is continuously processed as it arrives, rather than
being processed all at once like in batch processing. This means that the program
needs to be able to handle data in real-time and adapt to changes in the data stream.
Using a graph to represent the program allows for greater flexibilityin handling data
as it flows through the program, as the graph can be dynamically modified to adapt
to changes in the data stream.

nUN/VfﬂSITV OF NORTH CAROLINA

End-to-end Deep Learning of
Optimization Heuristics

Published at PACT 2017

Authors: Chris Cummins (University of Edinburgh, UK)

Presenter: Wangjiaxuan Xin

March 9, 2023

cUN/VfﬂSITV OF NORTH CAROLINA

https://pure.manchester.ac.uk/ws/portalfiles/portal/157726986/PACT17_DeepHeuristic.pdf
https://pure.manchester.ac.uk/ws/portalfiles/portal/157726986/PACT17_DeepHeuristic.pdf
https://github.com/ChrisCummins/paper-end2end-dl

Introduction

Deep neural networks should be able to automatically extract features from source code.

Training Predictive
e e

(a) Current state-of-practice

[rewes e o H o P
[I L]

(b) Our proposal
Figure 1: Building a predictive model. The model is originally

Figure 1: Building a predictive model. The model is originally trained on performance data and features extracted from
the source code and the runtime behavior. We propose bypassing feature extraction, instead learning directly over raw
togram source code.

UNIVERSITY OF NORTH CAROLINA

TTE

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8090482/8091202/8091247/8091247-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8090482/8091202/8091247/8091247-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8090482/8091202/8091247/8091247-fig-1-source-large.gif

Current Limitations

Machine learning in compilers

A , "."'snc
' 1. hard to get right

2 time consuming
3. repetitious

the human bit!

Figure 2: Current State of Practice.

cUN/VfﬂSITV OF NORTH CAROLINA

https://speakerdeck.com/chriscummins/end-to-end-deep-learning-of-optimization-heuristics-pact-17

Language Model

Figure 3: DeepTune architecture. Code properties are
extracted from source code by the language model. They
are fed, together with optional auxiliary inputs, to the
heuristic model to produce the final prediction.

UNIVERSITY OF NORTH CAROLINA

TTE

Auxiliary Input: Provide dynamic
information which cannot be statically
determined from the program code.

Embedding: Given a vocabulary size
V and embedding dimensionality D, an
embedding matrix Wi € RY*P is
learned during training, so that an
integer encoded sequences of tokens

t € N' is mapped to the matrix

T € Rt¥P. Here the embedding
dimensionality D = 64.

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/3-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/3-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/3-Figure2-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/3-Figure2-1.png

Heuristic Model

U —. LSTMs: Two-layer implementation
[—SowceCode] [Auxifary nputs _] receives a sequence of embedding
—— | vectors, and returns a single output

1
1
5[Sequence Frsoder | vector, characterizing the entire
3; i sequence.
= 1
3 :
1
1

Two-layer FNN: The first layer consists
e ; of 32 neurons with ReLU and the

s R second layer consists of a single neuron
i for each possible heuristic decision,

with Sigmoid Activation Function.

Device napping: (CPU,GPU)
Figure 2: DeepTune architecture. Code properties are ex-

UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

Training the Network

s i s e Training Methods: Stochastic
[Sousscode] [Auiayioms] Gradient Descent(SGD), using the

[Source Rewrter | | Adam optimizer.
1

- 1

!

i |

£ i Loss Function:
1

________ A 0= argénin IS L(X%,0)

Batch Normalization

Heuristic
Model

Predicted Optimization
Device mapping: (CPU,GPU)
Figure 2: DeepTune architecture. Code properties are ex-

UNIVERSITY OF NORTH CAROLINA

TTE

OpenCL Heterogeneous Mapping

Name vescriprion
Fl: data size/(comp+mem) commun.-computation ratio
F2: coalesced/mem % coalesced memory accesses
F3: (localmem/mem) Xwgsize ratio local to global mem accesses
x #. work-items
F4: comp/mem computation-mem ratio
(a) Feature values
Name Type Description
comp static #. compute operations
mem static #. accesses to global memory
localmem static #. accesses to local memory
coalesced static #. coalesced memory accesses
data size dynamic size of data transfers

UNIVERSITY OF NORTH CAROLINA

TTE

Figure 4: Features used by Grewe et al. to predict heterogeneous device mappings for OpenCL kernels.

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/6-Table1-1.png

OpenCL Thread Coarsening Factor

Thread Coarsening: Optimization for
parallel programs in which the
operations of two or more threads are
fused together.

SOTA: They implement an iterative
heuristic which determines whether a
given program would benefit from
coarsening. If yes, then the program is
coarsened, and the process repeats,
allowing further coarsening.

Flgure 5: Predicting coarsening factor (CF) of OpenCL
agni et al. reduce the multlldbel classification
decisions.by iteratively

UNIVERSITY OF NORTH CAROLINA

TTE

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Figure5-1.png

Neural Network Configuration

code wgsize dsize code
Inputs o) o0 el
Enbedding !
LT
LsTM2
Concat..
Normal.
DN_1
DNN_2) o0
{CPU,GPU} 1,2,4,8,16,32)
@ (b)

Finura 4+ NaanTiina nanral nahwnrke ranfinuirad far (a) hato

Flgure 6: DeepTune neural networks, configured for (a) heterogeneous mapping, and (b) thread coarsening factor. The
istays almost the same regardless of the optimization problem. The only changes are the extra input for (a) and

UNIVERSITY OF NORTH CAROLINA

TTE

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/6-Figure4-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/6-Figure4-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/6-Figure4-1.png

Parameters Comparison

Two Models' Similarity

#. neurons #. parameters
HM CF HM CF .
| The only difference between our

Embedding 64 64| 825 - 825 petwork design is the auxiliary inputs
LSTM_1 64 64 | 33024 3302 .
LSTM 2 64 o4 | 33024 3302 for Case Study A and the different
Concatenate 64 +2 - - - number of optimization decisions.
Batch Norm . 6 64 264 256
DNN_1 32 32 2,144 2,080
DNN_2 2 6 66 198
Total | 76.778 76,838

Figure 7: The size and number of parameters of the
DeepTune components of Figure 4, configured for
gigacncous mapping (HM) and coarsening factor

UNIVERSITY OF NORTH CAROLINA

TTE

https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Table5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Table5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Table5-1.png
https://d3i71xaburhd42.cloudfront.net/c2e3b7e3e8e5de4c41447017ca5fe95123790f6e/7-Table5-1.png

Performance Evaluation

14% and 5% improvements over state-of-the-art

M State-of-the-art [l DeepTune
256 benchmarks

Speedup

Heterogeneous Mapping Thread Coarsening

Figure 8: Experiments Results Evaluation in two tasks[1].

cUN/VERSITV OF NORTH CAROLINA

https://speakerdeck.com/chriscummins/end-to-end-deep-learning-of-optimization-heuristics-pact-17?slide=27

Transfer Learning

Extract the language model, 1nclud1ng the
Embedding, LSTM_1, and LSTM_2

layers, trained for the heterogeneous
mapping task and transfer it over to the new
task of thread coarsening.

Since DeepTune keeps the same design for
both optimization problems, this is as simple
as copying the learned weights of the three
layers. Then train the model as normal.

Figure 9: Transfer Learning Approach[2]

UNIVERSITY OF NORTH CAROLINA

TTE

https://speakerdeck.com/chriscummins/end-to-end-deep-learning-of-optimization-heuristics-pact-17?slide=29

Transfer Learning Results

14% and 11% improvements over state-of-the-art

[state-of-the-art [DeepTune Wl w. Transfer Learning

il il
o

Heterogeneous Mapping Thread Coal " 4

Figure 10: Transfer Laearning Results[3].

nUN/VERSITV OF NORTH CAROLINA

https://speakerdeck.com/chriscummins/end-to-end-deep-learning-of-optimization-heuristics-pact-17?slide=31

Internal State Visualization

ok, S Velohalinges, _ploval floact x, _glots] flost* y, _gloml flort 7,
Lo 1o or,__globat Fhoat+ 1, _global Struct walues® <) (

o
Lot si (i) I/

ot 11415

(a) Source Code
e vaid i 5, 3 b, _giom o <, _glol iaak" 6, _gianal Fest o, _ateba lont 1,

(0) [Source Rewriter |

(0 [Sequence Encoder |
.g Leamed embeddings (PCA projections)
@3 Embedding - __
s N e
ChH
iy
Batch Normalization _gover
g Outputs of Language Models
i3 p— = _
032 Dense NN
()

AMD HD 5900 AMD Tarti 7670 NVIDIAGTX 480 NVIDIA Tesia K20c
cR:2 F:2 Fid £t
[Figure 9: Visualizing the internal state of DeepTune when predicting coarsening factor for Parboil’s mriQ benchmark on four

	Introduction
	Motivations
	Methodology
	Design Space Exploration
	Machine Learning Models
	Results
	Q A
	Introduction
	DeepTune
	Applications on two tasks
	Results
	DeepTune Internal Activation State

