
1

Presenter:	Yihe	Wang	
Department	of	Computer	Science

University	of	North	Carolina	at	Charlotte
ywang145@uncc.edu

1. RLScheduler:	An	Automated	HPC	Batch	Job	Scheduler	Using	Reinforcement	Learning
2. SchedInspector:	A	Batch	Job	Scheduling	Inspector	Using	Reinforcement	Learning



RLScheduler:	An	Automated	HPC	Batch	Job	Scheduler	Using	Reinforcement	Learning

• Introduction

‒ Existing	HPC	batch	job	schedulers	typically	leverage	heuristic priority	functions	to	
prioritize	and	schedule	jobs.	(ex.	FCFS,	SJF)

‒ They	are	fixed	and	cannot	automatically	adapt	to	the	variations	in	the	target	
environment.

‒ Ideally,	an	RL-based	job	scheduler	will	adapt	to	the	varying	job	load	as	RL	can	
continuously	learn	from	trial-and-error	as	the	load	varies.

2



Background

3

Job	Attributes Reinforcement	Learning	Framework



Background

‒ Scheduling	Goal
o Minimize	the	average	waiting	time	(wait).
o Minimize	the	average	bounded	slowdown	(bsld).
o Maximize	resource	utilization	(util)

Question	from	Tanusri:	How	is	backfilling	being	set?

‒ Scheduling	and	Backfilling
o When	a	job	waiting	until	its	request	to	be	satisfied,	the	backfilling	can	be	activated	to	search	
for	the	jobs	whose	resource	allocations	can	be	satisfied	now	without	affecting	the	planned	
execution	for	the	waiting	job

4



1)	Take	the	waiting	jobs	and	idle	compute	resources	of	the	target	HPC	environment	as	the	input	for	a	deep	neural	
network	(DNN),	2)Use	the	DDN	as	the	current	scheduling	policy	to	select	a	‘best‘	job	as	the	action	,3)Apply	the	action	
back	to	the	environment.

1.	Job	Order	Change 2.	High	variances	in	Samples

5

Discussion	on	Challenges



6

The	overall	architecture	of	RLScheduler



Kernel-based	Neural	Network

• For	each	waiting	job,	the	network	
outputs	a	value,	a	calculated	‘score’	of	
the	job.	The	values	of	all	waiting	jobs	
form	a	vector.

• Once	jobs	are	reordered,	their	
probabilities	will	also	be	reordered	
accordingly

7

Policy	Network



Compute	the	reward

• For	a	sequence	of	jobs,	after	the	policy	
network	makes	all	the	scheduling	
decisions,	we	collect	the	rewards	r.	

• The	output	of	value	network	can	be	
intuitively	considered	as	the	expected	
reward	(exp_r).	Use	(r−exp_r)	to	train	
the	policy.

• This	difference	can	be	intuitively	
considered	as	the	improvement	of	
current	policy	over	historical	
policies	on	this	set	of	jobs.

8

Value	Network

Question	from	Tanusri:	SchedInspector uses	the	Actor-Critic	model	to	accelerate	and	stabilize	the	training.	
Why	does	the	training	need	to	be	stabilized	and	why	is	the	Actor-Critic	model	the	best	model?



Trajectory	filtering	– Solve	the	
High	variances	in	Samples

• It	filters	the	‘easy	sequences’	out	since	
they	will	not	contribute	info	to	improve	
the	RL	agent.		For	the	‘non-easy	
sequences’,	it	categorizes	all	sequences	
into	two	ranges	and	trains	the	RL	agent	
in	two	steps.

• 1)	The	first	step	contains	job	sequences	
whose	variances	fall	into	a	specific	
range	(R).

• 2)	The	second	step	trains	on	all	the	job	
sequences

9

Variance	Reduction

Question from	Hrushi:	How	does	the	system	handle	
variations	in	job	requests	and	resource	availability	
over	time?



Evaluation

• Address	three	questions	

‒ Whether	the	new	designs	(kernel-based	neural	network	and	trajectory	filtering	
mechanism)	improve	the	training	performance	of	RLScheduler?

‒ How	well	are	RLScheduler’s training	and	performance	towards:	different	HPC	
workloads,	different	scheduling	metrics,	or	even	combined	scheduling	metrics?

‒ Will	a	scheduling	policy	that	RLScheduler learns	still	be	applicable	to	an	unseen,	new	
workload?

10



11

Kernel-based	Neural	Network	Performance

o Question	from	Chris:	How	might	the	trade-off	between	
size	of	the	policy	network	and	its	resultant	change	in	
computational	overhead	impact	the	performance	of	the	
SchedInspector?	

o More	parameters	do	not	necessarily	mean	better	
performance.



12

Trajectory	Filtering	Performance



13

Different	Workloads	and	Goals

Bounded	Slowdown Resource	utilization



14

Different	Workloads	and	Goals

Bounded	Slowdown Resource	utilization

A	heuristic	scheduler	that	performs	well	on	one	goal	may	perform	poorly	on	another	goal	even	scheduling	the	same	
workload,	while	RLScheduler can	adapt	to	different	workloads	and	optimization	goals	with	good	performance



15

RLScheduler Stabilization

• Whether	the	learned	model	would	be	too	specific	to	the	given	job	trace	and	can	not	handle	even	
small	shifts	in	the	workload?

• Applying	the	learned	RL	model	(RL-X)	from	job	trace	(X)	onto	other	job	traces	(Y)	and	see	how	it	
would	perform.	It	will	be	no	worse	than	using	an	inappropriate	heuristic	scheduler.



16

RLScheduler with	Fairness

• In	real	world,	scheduler	needs	to	consider	not	only	the	average	slowdown	of	all	jobs,	but	also	the	
average	slowdown	of	each	user’s	jobs.

• use	Maximal	as	the	aggregator,	which	means	RLScheduler will	focus	on	the	user	with	maximal	job	
slowdown	and	learn	to	prioritize	the	user	to	minimize	the	overall	maximal.



SchedInspector:	A	Batch	Job	Scheduling	Inspector	Using	Reinforcement	Learning

17

• This	paper	integrate	runtime	factor	into	existing	batch	job	scheduling

• This	paper	introduces	a	scheduling	inspector	to	scrutinize	the	scheduling	
decisions	made	by	the	existing	scheduling	policy.

• If	it	believes	the	current	job	as	a	good	fit	for	the	runtime,	the	scheduling	continues	
as	normal.	Otherwise,	this	scheduling	decision	will	be	rejected	and	the	job	will	be	
put	back	to	the	waiting	queue	and	be	considered	again	at	the	next	scheduling	
point.	



18

An	Example	of	Better	Case

o we	notice	that	the	better	performance	
comes	from	the	cases:	
o 1)new	jobs	arrived	and	were	added	
into	the	waiting	queue	before	the	
next	scheduling	point;	

o 2)	the	new	jobs	match	the	cluster	
availability	better	and	are	scheduled	
to	improve	the	performance

o Although	we	cannot	accurately	predict	
the	exact	features	or	the	arrivals	of	
future	jobs,	from	the	historical	job	and	
environmental	statistics,	we	still	can	
learn	when	rejection	has	higher	chance	
to	win



19

The	overall	architecture	of	SchedInspector

The	policy	and	value	networks	are	the	same	in	RL	agent.



Feature	Building

‒ Scheduled	job
o job	waiting	time	(𝑤𝑎𝑖𝑡)
o job	execution	time	(𝑒𝑠𝑡)
o job	requested	computing	nodes	(𝑟𝑒𝑠)

‒ Rejected	times	
o Question	from	Tanusri:	How	is	MAX_REJECTION_TIMES	set?	If	it	set	arbitrarily	will	affect	the	
training	performance?

o Hyperparameter:	MAX_REJECTION_TIMES			

‒ Queue	delays
o Iterate	all	of	the	waiting	jobs,	calculate	their	expected	delays	according	to	the	given	performance	
metrics,	and	add	them	together	as	the	value	of	queue	delays.

‒ Runnable	and	Cluster	availability
o ratio	of	free	computing	nodes(𝑛_𝑓𝑟𝑒𝑒 )	and	total	computing	nodes	(𝑛_𝑡𝑜𝑡𝑎𝑙)	is	the	Cluster	
availability.	Runnable	value	is	1	meaning	the	job	can	run	immediately;	otherwise,	its	value	is	0.

‒ Backfilling	Contributions
o If	it	is	enabled,	we	scan	the	waiting	jobs	and	calculate	the	number	of	waiting	jobs	that	can	be	
backfilled	as	the	final	value	of	this	feature. 20



Reward	Function

‒ Native	reward
o Average	bounded	slowdown(blsd):	reward	=	𝑏𝑠𝑙𝑑_𝑜𝑟𝑖𝑔 −	𝑏𝑠𝑙𝑑_𝑖𝑛𝑠𝑝𝑒𝑐𝑡.
o Drawbacks:	The	improvements	of	reward	in	a	job	sequence	with	large	bsld can	be	easily	larger	
than	a	job	sequence	with	smaller	bsld,	which	may	confuse	the	RL	agent	during	training.	

‒ Win/Loss	reward
o 𝑐𝑜𝑢𝑛𝑡(𝑏𝑠𝑙𝑑𝑖𝑛𝑠𝑝𝑒𝑐𝑡 <	𝑏𝑠𝑙𝑑𝑜𝑟𝑖𝑔)	:	It	will	not	be	affected	by	the	variances	of	the	metric	values.
o Drawbacks:	it	treats	all	improvements	the	same,	hence	does	not	reward	the	big-gain	actions.

‒ Percentage	Reward
o (𝑏𝑠𝑙𝑑_𝑜𝑟𝑖𝑔 −𝑏𝑠𝑙𝑑_𝑖𝑛𝑠𝑝𝑒𝑐𝑡)/𝑏𝑠𝑙𝑑_𝑜𝑟𝑖g	:	It	does	not	have	the	previous	two	drawbacks.

21

Question	from	Trevon:	What	biases	might	the	reward	function	introduce	that	lead	to	bad	performances?
Question	from	Wes:	Can	you	explain	the	reward	function	in	more	detail	on	how	it	works	with	the	
SchedInspector?



Evaluation

22

Question	from	Shreya:	How	do	you	ensure	that	SchedInspector is	not	overfitting	to	th training	data	and	
is	generalizing	well	to	new,	unseen	data?

To	avoid	over-fitting,	for	each	trace	we	use	the	first	20%	for	training	and	the	remaining	80%	of	the	
data	for	testing.



Overall	Performance

23

o 4	job	traces
o Two	policies:	SJF	and	F1
o One	goal:	average	bounded	job	slowdown	(𝑏𝑠𝑙𝑑)



24

Impacts	of	Feature	Building

o Native	Features:	it	directly	use	the	whole	
environmental	state	as	the	inputs.

o Compacted	Features:	it	only	the	current	job	
and	the	cluster	state	and	ignores	the	queue	
delay	and	backfilling	contributions.

o SchedInspector Features:	Our	case.



25

Impacts	of	Reward	Function

o Native	reward	

o Win/loss	reward

o Percentage	reward:		it	stabilizes	the	highly	
variant	reward	values	as	well	as	captures	
the	big	gains.	



26

Working	with	Various	Scheduling	Policies

o The	key	is	whether	rejecting	current	job	
can	lead	to	a	different	job	being	scheduled	
in	the	future.	If	nothing	changes	after	some	
idle	time,	then	the	rejection	becomes	a	
pure	waste.	

o Since	FCFS	always	prioritizes	the	oldest	
job,	any	future	job	will	not	impact	its	
decision.



27

Working	with	Different	Job	Traces



28

Working	with	Different	Job	Execution	Metrics

o Average	waiting	time	(wait):	the	average	
duration	between	the	job’s	submission	and	
its	start	time.	It	does	not	consider	job	
length	in	its	calculation.

o Maximal	bounded	job	slowdown	(𝑚𝑏𝑠𝑙𝑑):	
the	maximal	𝑏𝑠𝑙𝑑 of	a	job	sequence	instead	
of	the	average.	It	emphasizes	on	the	
fairness	and	effectively	avoids	starving	
long	jobs.



29

Trade-off	Among	Different	Metrics

o We	trained	SchedInspector towards	𝑏𝑠𝑙𝑑
and	evaluated	it	towards	𝑢𝑡𝑖𝑙 and	𝑚𝑏𝑠ld.	

o The	result	shows	the	rejections	introduced	
by	SchedInspector do	not	break	the	system	
utilization.



30

SchedInspector in	Realistic	Settings

o Real	world	batch	job	schedulers	are	more	
complicated.

o Slurm multifactor	priority	scheduler	with	
backfilling	as	the	base	scheduling	policy.	 Goal: bsld

Question	from	Atharva:	In	real-world	circumstances,	how	effective	is	SchedInspector at	increasing	
batch	task	scheduling	performance?



Some	questions	at	the	end

o Question	from	Chris:	Since	the	approach	seems	to	hurt	performance	at	the	beginning	of	training,	and	the	
output	is	less	interpretable	than	heuristic	algorithms,	is	it	likely	that	system	administrators	may	be	almost	
equally	hesitant	to	implement	such	a	tool	as	a	fully	new	scheduling	algorithm?

o Question	from	Jonathan:	What	are	the	advantages	of	SchedInspector over	other	approaches?

o Question	from	Uzochi:	If	one	were	to	train	a	machine	learning	model	to	replace	the	existing	job	scheduling	
heuristic	algorithms,	would	SchedInspector still	be	necessary?
o Not	necessary.	The	advantage	of	SchedInspector is	it	is	more	interpretable	than	pure	RL	agent.	

o Question	from	Wes:	How	do	you	think	the	SchedInspector can	be	improved	where	and	why?
o Maybe	do	some	online	learning?

o What	are	the	differences	among	these	job	traces?	Do	they	cover	all	the	situations	in	scheduling?
o I	don’t	know	actually.

31



Questions

32


