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n il R1.Scheduler: An Automated HPC Batch Job Scheduler Using Reinforcement Learning

* Introduction

— Existing HPC batch job schedulers typically leverage heuristic priority functions to
prioritize and schedule jobs. (ex. FCFS, SJF)

— They are fixed and cannot automatically adapt to the variations in the target
environment.

— Ideally, an RL-based job scheduler will adapt to the varying job load as RL can
continuously learn from trial-and-error as the load varies.



[
| COLLEGE OF COMPUTING
| AND INFORMATICS

I

Background

Job Attributes

TABLE I: Description of job attributes.

Name [ Symbol | Description
Job ID idt the id of job
User ID Ut the user’s ID
Group ID gt the group’s ID
Executable Id appt ID of the job’s executable file
Submit Time St job submission time
Requested Processors ng the number of processors that a job requests.
Requested Time Tt job’s runtime estimation (or upper bound) from users
Requested Memory m the requested memory per processor
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Fig. 1: General framework of reinforcement learning.



B i ™ Background

— Scheduling Goal
o Minimize the average waiting time (wait).
o Minimize the average bounded slowdown (bsld).

o Maximize resource utilization (util)

Question from Tanusri: How is backfilling being set?

— Scheduling and Backfilling

o When a job waiting until its request to be satisfied, the backfilling can be activated to search
for the jobs whose resource allocations can be satisfied now without affecting the planned
execution for the waiting job
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it Discussion on Challenges

1) Take the waiting jobs and idle compute resources of the target HPC environment as the input for a deep neural
network (DNN), 2)Use the DDN as the current scheduling policy to select a ‘best‘ job as the action ,3)Apply the action
back to the environment.

1.Job Order Change 2. High variances in Samples
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ﬂ/ il The overall architecture of RLScheduler
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Fig. 4: The overall architecture of RLScheduler.
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B i ™ Policy Network

Kernel-based Neural Network

* For each waiting job, the network
outputs a value, a calculated ‘score’ of Jq.
the job. The values of all waiting jobs
form a vector.

%rnel-based Network

* Once jobs are reordered, their
probabilities will also be reordered
accordingly

Fig. 5: The RLScheduler policy network structure. Its core is
a kernel-based neural network.



it Value Network

Question from Tanusri: SchedInspector uses the Actor-Critic model to accelerate and stabilize the training.
Why does the training need to be stabilized and why is the Actor-Critic model the best model?

Compute the reward

Value Network

» For a sequence of jobs, after the policy
network makes all the scheduling
decisions, we collect the rewards r.

* The output of value network can be
intuitively considered as the expected
reward (exp_r). Use (r-exp_r) to train
the policy.

Fig. 6: The RLScheduler value network structure. Its core is
* This difference can be intuitively a 3-layer multiple layer perceptron network (MLP).
considered as the improvement of
current policy over historical
policies on this set of jobs.



(il Variance Reduction

Question from Hrushi: How does the system handle
Trajectory filtering — Solve the variations in job requests and resource availability

High variances in Samples over time?

It filters the ‘easy sequences’ out since
they will not contribute info to improve
the RL agent. For the ‘non-easy
sequences), it categorizes all sequences
into two ranges and trains the RL agent

1031
in two steps. |

¢ 1) The first step contains job sequences
whose variances fall into a specific
range (R).
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Fig. 7: The distribution of the average bounded slowdown of
scheduling sequence of 256 jobs in PIK-IPLEX-2009 job trace.



| (it Fvaluation

* Address three questions

— Whether the new designs (kernel-based neural network and trajectory filtering
mechanism) improve the training performance of RLScheduler?

— How well are RLScheduler’s training and performance towards: different HPC
workloads, different scheduling metrics, or even combined scheduling metrics?

— WIll a scheduling policy that RLScheduler learns still be applicable to an unseen, new
workload?

10
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TABLE 1V: The network configurations of different policy
network designs, including our design (RLScheduler)

Name Layers Size of each layer
MLP_vl 3 128,128,128
MLP_v2 3 32,16,8
MLP_v3 5 32, 32, 32, 32, 32
LeNet [33] 6 2x(conv2d, maxpooling2d), dense
RLScheduler 3 32,16,8

o Question from Chris: How might the trade-off between
size of the policy network and its resultant change in
computational overhead impact the performance of the

SchedInspector?

o More parameters do not necessarily mean better

performance.

Kernel-based Neural Network Performance
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et Trajectory Filtering Performance

|
Without trajectory filtering With trajectory filtering
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Fig. 9: The training curves of RLScheduler on PIK-IPLEX-
2009 job trace with and without trajectory filtering.
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Bounded Slowdown Resource utilization
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Bounded Slowdown Resource utilization

TABLE V: Results of scheduling different job traces. TABLE VI: Results of scheduling towards resource utilization.

|_Trace | FCFS | WFP3 | UNI | SIF | FI | RL | [ Trace | FCFS | WFP3 | UNICEP | SIF | FI | RL |
Scheduling without Backfilling Scheduling without Backfilling
Lublin-1 7273.8 19754 22275 277.35 | 258.37 | 254.67 Lublin-1 0.657 0747 0.691 0762 | 0.816 | 0.714
SDSC-SP2 | 1727.5 | 3000.9 | 1848.5 | 2680.6 | 1232.1 | 466.44 SDSC-SP2 | 0.670 | 0.658 0.688 0.645 | 0.674 | 0.671
HPC2N 297.18 | 426.99 | 609.77 157:71 118.01 117.01 HPC2N 0.638 0.636 0.636 0.640 | 0.637 | 0.640
Lublin-2 | 78425 | 95232 | 11265 | 787.89 | 69834 | 72451 Tublin 10404 T 0545 | 0310 0362 | 0478 | 0.562
Scheduling with Backfilling Scheduling with Backfilling
Lublin-1 235.82 133.87 | 307.23 73.31 75.07 58.64 Lublin-1 0.868 0.864 0.883 0.778 | 0.840 | 0.850
SDSC-SP2 | 1595.1 1083.1 | 548.01 | 2167.8 | 1098.2 | 397.82 SDSC-SP2 | 0.682 | 0.681 0.706 0.661 | 0.677 | 0.707
HPC2N 127.38 97.39 175:12 122.04 71.95 86.14 HPC2N 0.639 0.637 0.638 0.641 | 0.638 | 0.642
Lublin-2 247.61 318.35 | 379.59 91.99 148.25 118.79 Lublin-2 0.587 0.583 0.587 0.593 | 0.552 | 0.593

A heuristic scheduler that performs well on one goal may perform poorly on another goal even scheduling the same
workload, while RLScheduler can adapt to different workloads and optimization goals with good performance
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Whether the learned model would be too specific to the given job trace and can not handle even
small shifts in the workload?

Applying the learned RL model (RL-X) from job trace (X) onto other job traces (Y) and see how it
would perform. It will be no worse than using an inappropriate heuristic scheduler.

TABLE VII: Performance comparisons of one RL-learned model (RL-X) being applied to other job traces (Y).

Trace | Best Heuristic Sched | Worst Heuristic Sched | RL-Lublin-1 | RL-SDSC-SP2 | RL-HPC2N | RL-Lublin-2
Scheduling without Backfilling
Lublin-1 258.37 (F1) 22274.74 (UNICEP) 254.67 482.62 283.00 334.73
SDSC-SP2 1232.06 (F1) 3000.88 (WFP3) 1543.40 466.44 1016.83 1329.41
HPC2N 118.01 (F1) 660.77 (UNICEP) 169.91 300.43 186.42 236.00
Lublin-2 698.34 (F1) 11265.3 (UNICEP) 665.49 805.16 648.52 724.51
ANL Intrepid 8.39 (F1) 35.11 (FCES) 9.91 9.61 8.93 9.75
Scheduling with Backfilling
Lublin-1 73.31 (SJF) 307.23 (UNICEP) 58.64 93.16 54.65 64.45
SDSC-SP2 548.01 (UNICEP) 2167.84 (SJF) 1364.43 397.82 746.65 1192.97
HPC2N 71.95 (F1) 175.12 (UNICEP) 115.93 128.73 115.79 144.54
Lublin-2 91.99 (SJF) 379.59 (UNICEP) 172.15 183.98 139.80 118.79
ANL Intrepid 2.73 (F1) 4.12 (UNICEP) 3.63 4.56 3.99 3.58
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In real world, scheduler needs to consider not only the average slowdown of all jobs, but also the
average slowdown of each user’s jobs.

use Maximal as the aggregator, which means RLScheduler will focus on the user with maximal job
slowdown and learn to prioritize the user to minimize the overall maximal.

TABLE VIII: Results of scheduling different job traces to-
wards bounded job slowdown with Maximal Fairness.

[ Trace | FCFS | WFP3 | UNICEP | SJF | FI | RL |

Scheduling without Backfilling
SDSC-SP2 | 7257 14858 12234 12185 | 8260 | 4116
HPC2N 2058 5107 5145 1255 1310 | 1147

Scheduling with Backfilling
SDSC-SP2 | 7356 8464 3840 10121 | 7799 | 2712
HPC2N 1502 2125 2081 1491 583 519

16



n | WD WroRMATIES SchedInspector: A Batch Job Scheduling Inspector Using Reinforcement Learning

« This paper integrate runtime factor into existing batch job scheduling

* This paper introduces a scheduling inspector to scrutinize the scheduling
decisions made by the existing scheduling policy.

« Ifitbelieves the current job as a good fit for the runtime, the scheduling continues
as normal. Otherwise, this scheduling decision will be rejected and the job will be
put back to the waiting queue and be considered again at the next scheduling
point.
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Figure 1: Scheduling jobs with/without SchedInspector. x-axis shows
the timeline in minutes; y-axis shows the compute nodes (n,_;s); each
block represents a job that takes amount of nodes and time; J, is the
preliminary job running before the scheduling starts.

o we notice that the better performance
comes from the cases:

o 1)new jobs arrived and were added
into the waiting queue before the
next scheduling point;

o 2) the new jobs match the cluster
availability better and are scheduled
to improve the performance

o Although we cannot accurately predict
the exact features or the arrivals of
future jobs, from the historical job and
environmental statistics, we still can
learn when rejection has higher chance
to win
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Figure 3: Architecture of SchedInspector.

The policy and value networks are the same in RL agent.

The overall architecture of SchedInspector
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ittt sl Feature Building

— Scheduled job
O job waiting time (wait)
o job execution time (est)
o job requested computing nodes (res)

Rejected times

o Question from Tanusri: How is MAX_REJECTION_TIMES set? If it set arbitrarily will affect the
training performance?

o Hyperparameter: MAX_REJECTION_TIMES

— Queue delays

o Iterate all of the waiting jobs, calculate their expected delays according to the given performance
metrics, and add them together as the value of queue delays.

— Runnable and Cluster availability

o ratio of free computing nodes(n_free ) and total computing nodes (n_total) is the Cluster
availability. Runnable value is 1 meaning the job can run immediately; otherwise, its value is 0.

Backfilling Contributions

o Ifitis enabled, we scan the waiting jobs and calculate the number of waiting jobs that can be
backfilled as the final value of this feature. 20



(il Reward Function

Question from Trevon: What biases might the reward function introduce that lead to bad performances?
Question from Wes: Can you explain the reward function in more detail on how it works with the
SchedInspector?

— Native reward
o Average bounded slowdown(blsd): reward = bsld_orig - bsld_inspect.

o Drawbacks: The improvements of reward in a job sequence with large bsld can be easily larger
than a job sequence with smaller bsld, which may confuse the RL agent during training.

— Win/Loss reward
o count(bsldinspect < bsldorig) : It will not be affected by the variances of the metric values.
o Drawbacks: it treats all improvements the same, hence does not reward the big-gain actions.

— Percentage Reward
o (bsld_orig -bsld_inspect)/bsld_orig : It does not have the previous two drawbacks.

21
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Table 3: List of base batch job scheduling policies.

Table 2: List of job traces in use. ["Abbr. | Full Name | Priority Setting |
Name | cluster size | interval (sec) | est; (sec) | res; | FCFS | First Come First Served max(wait j)
CTC-SP2 338 379 11277 11 LCFS | Last Come First Served min(wait ;)
SDSC-SP2 128 1055 6687 11 SJF | Shortest Job First min(est;)
HPC2N 240 538 17024 6 SAF | Smallest estimated Area First min(estj * res;)
| Lublin | 256 771 4862 | 22 | SRF | Smallest estimated Ratio First min(est;/res;)
F1 Carastan-Santos et. al [9] inogiolesty) K nes)
+870 * log1o (sj))

Question from Shreya: How do you ensure that SchedInspector is not overfitting to th training data and
is generalizing well to new, unseen data?

To avoid over-fitting, for each trace we use the first 20% for training and the remaining 80% of the
data for testing.

22
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Overall Performance

o 4 job traces

o Two policies: SJF and F1
o One goal: average bounded job slowdown (bsld)
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Figure 4: Training curves of SchedInspector on four job traces using two schedulers. The x-axis shows the training epoch, the y-axis shows the
metrics improvements on the selected metrics (bsld). Larger than 0 means SchedInspector performs better than the base schedulers.
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Impacts of Feature Building

—— SchedInspector 40 60 80 100
—— Compacted Features
—— Native Features

0 20 40 60 80 100
Epoch

-200

Metrics Improvement

Figure 5: The comparison of the training curves of SchedInspector
with different feature building mechanisms. y-axis shows the im-
provements of SchedInspector over the base scheduling policy on bsld.
Larger is better.

o Native Features: it directly use the whole
environmental state as the inputs.

o Compacted Features: it only the current job
and the cluster state and ignores the queue

delay and backfilling contributions.

o SchedInspector Features: Our case.
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el Impacts of Reward Function
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Figure 6: The comparison of the training curves of SchedInspector
with different reward functions.
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Working with Various Scheduling Policies
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Figure 7: SchedInspector training with different base job scheduling

policies. Blue curve is the bsld improvements using the left y-axis;

orange curve is the rejection ratio using the right y-axis.

The key is whether rejecting current job
can lead to a different job being scheduled
in the future. If nothing changes after some
idle time, then the rejection becomes a
pure waste.

Since FCFS always prioritizes the oldest

job, any future job will not impact its
decision.
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Working with Different Job Traces
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bsld

Trade-off Among Different Metrics
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We trained SchedInspector towards bsld
and evaluated it towards util and mbsld.

The result shows the rejections introduced

by SchedInspector do not break the system
utilization.
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il SchedInspector in Realistic Settings

I

Question from Atharva: In real-world circumstances, how effective is SchedInspector at increasing
batch task scheduling performance?

1000, 329 62.4 79.31% 78.82%
Job_Priority =(weightage) * (age_factor)+ CEL' 0.0 800 st N i .
= . i
(weightfairshare) * (fairshare_factor)+ o 600 08 —L
— _0 2 .. . '
(weightjarer) * (job_attribute_factor)+ o A% 07/ i i
: . i :
(weightpartition) * (partition_factor) + ... X _0.4 —— Slurm 20014 i 06 | !
gritp p
ol @ o ! it
0 20 40 60 80 100 Original Inspected Original Inspected
Epoch Performance Utilization
o Real world batch job schedulers are more Figure 12: The performance of SchedInspector working with Slurm.
complicated y-axis on the right two charts are bsld and util percentage.
o Slurm multifactor priority scheduler with
backfilling as the base scheduling policy. Goal: bsld
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it Some questions at the end

o Question from Chris: Since the approach seems to hurt performance at the beginning of training, and the
output is less interpretable than heuristic algorithms, is it likely that system administrators may be almost
equally hesitant to implement such a tool as a fully new scheduling algorithm?

o Question from Jonathan: What are the advantages of SchedInspector over other approaches?

o Question from Uzochi: If one were to train a machine learning model to replace the existing job scheduling
heuristic algorithms, would SchedInspector still be necessary?

o Not necessary. The advantage of SchedInspector is it is more interpretable than pure RL agent.

o Question from Wes: How do you think the SchedInspector can be improved where and why?
o Maybe do some online learning?

o What are the differences among these job traces? Do they cover all the situations in scheduling?
o I don’t know actually.
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Questions

32



