DOOMSDAY | DESH

PREDICTING NODE FAILURE LOCATIONS AND SUPERCOMPUTING-APOCALYPSE LEAD TIMES USING MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING

> UZOCHI **DIMKPA** PROFESSOR DONG DAI

Ø

 \bigcirc

Ο

PREDICTING DOOMSDAY ON AN HPC SYSTEM

- MTBF is decreasing as HPC system component count increases
- MTBF = Mean time between failures; doomsday is happening more often as computation speed (throughput) increases and latency decreases
 - Higher MTBF = higher fault rates = more wasted computation time & resources = more doomsday occurrences
 - Something **must** be **done** to **help fix this**

PREDICTING DOOMSDAY ON AN HPC SYSTEM (CONT'D)

- **Doomsday** = Node failure(s)
- Node failure = abnormal node shutdowns caused by some system anomaly triggered by software and/or hardware
 - Some software issues cause hardware issues; vice versa
- Anomalous node failure = A node failing because of issue other than maintenance; normally, these are caused by hardware/software errors
 - Shutting down, heartbeat failure/unresponsive, etc.

PREDICTING DOOMSDAY ON AN HPC SYSTEM

(CONT'D)

TABLE IV: Examples of Node Failures					
bit flips caused failure	hardware caused failure	app. caused failure			
4.25.30 pm	8.44.12 pm	2:44:49 am			
LCB on and Ready	Hardware Overflow Error	Matlab invoked oomkiller			
Micropacket CRC Error	Lnet errors Recvd down	2:54:14 am Out of memory: Kill pro-			
Messages	event	cess			
	8.47.45 pm	2:58:14 am			
	Lustre Errors Binary changed	Killed process			
4.36.42 pm Aries LCB operating badly, will be shutdown	8.48.06 pm Bad RX packet error	2:59:40 am Kernel panic not sync- ing:			
4.37.31 pm Failed LCB components	8.52.37 pm Out of memory/Killed processes	3:00:00 am			
4.37.39 pm	8.55.13 pm	3:00:03 am			
2 nodes unavailable	Node unavailable	Node unavailable			
Failed within 12 min.	Failed within 11 min.	Failed within 16 min.			

Examples of log phrase and timestamp sequences leading to node failures

Source – **Dooms**day

PREDICTING DOOMSDAY ON AN HPC SYSTEM (CONT'D)

- Prediction is done using combination of natural language processing and semantic analysis on timestamped failure chains (DeSH speaks about semantic analysis; Doomsday doesn't)
 - Natural language processing = Log data contains phrases; these phrases have various meanings in different compute state contexts
 - Semantic analysis = LSTM layers (consisting of RNNs) encode contextual (definitional) relationships between phrases; closer together in vector = higher correlation

Timestamped failure chain = ordered combination of collated phrases (integrated document); **pulled** from **log data** (VERY IMPORTANT)

LOG DATA & WHY IT'S IMPORTANT

D

WHY LOG DATA?

•Vast amount of information available

•All* information is relevant

* All selected log information

* Physical environment info (**SEDC** logs) discarded

SEDC – System Environment Data Collection; temperature, voltage, etc.

WHY LOG DATA? (CONT'D)

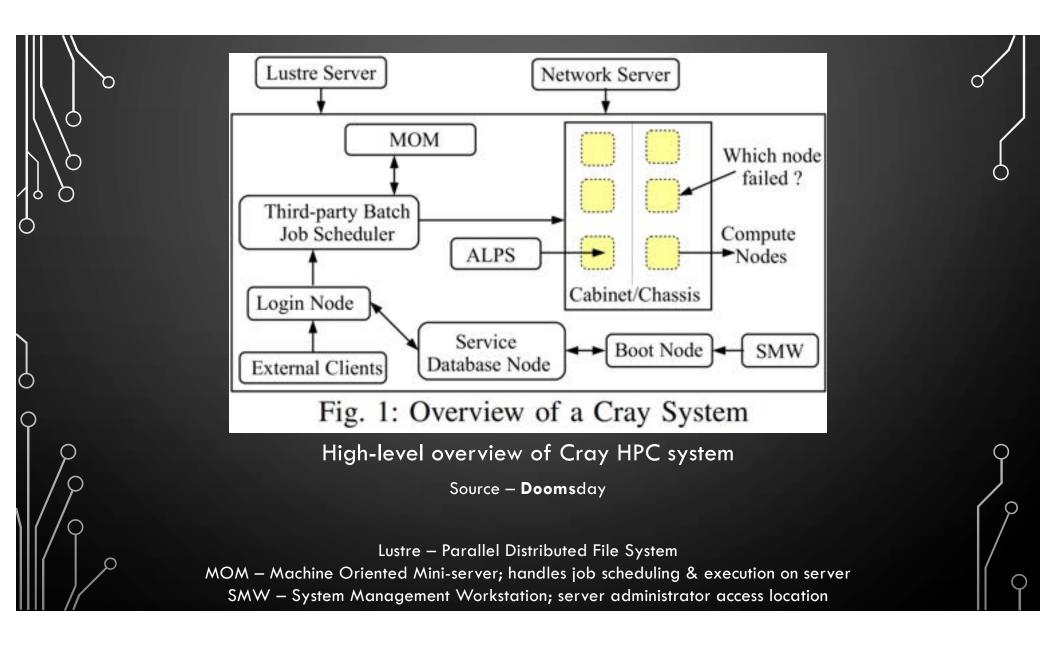
Source	Content		
p0 directory	Internals of compute nodes		
Boot Manager	Boot node messages		
Log System	rsyslog messages		
Power/State Logs	Component power and state information		
Event Messages	Event router records		
SMW Messages	System Management Workstation messages		
HSN Stats	High Speed Network Interconnect logs		
Job Logs	Batch job/application scheduler messages		

. .

Sources of most prevalent logs, and their content

Source – **Dooms**day

WHY LOG DATA? (CONT'D)


•Log information/structure is vendor-specific

• Cray is not the same as BlueGene/P

• Cray – Intel; BlueGene/P – IBM

•Log sources vary

Cray logs are pulled from many different locations;
 BlueGene/P logs sources are dissimilar

	[2008-07-08 03; [2008-07-08 03; [2008-07-08 03; [2008-07-08 03; [2008-07-08 03; [2008-07-08 03; [2008-07-08 03; [2008-07-08 03;	10:01][c0-0c2s 10:01][c0-0c2s 10:02][c0-0c0s 11:13][c0-0c1s 11:48][c3-0c2s 12:16][c0-0c1s 12:16][c0-0c1s	3n2]fs; 3n2]fs; 7n3]fs; 6n3]Lu; 0n0]Lu; 4n2]Ou 4n2]Ou	x-linux-aio[57 x-linux-aio[57 x-linux-aio[72 streError: 233 stre: 13612:0: t of Memory: K t of memory: K	08]: seg 07]: seg 68] gene 31:0:(fi (llite_m ill proco illed pro		b rip 0000000000421b60 r b rip 0000000000421b60 r 0 rsp:7ffffffffadc8 error idate_fini()) failure -2 inary changed. inode 392 699161 and children. pid: 307899	sp 00007ffffffffae58 error 5 sp 00007ffffffffae58 error 5 :0 inode 39221021 46505
С				Examp	ole Cr	ay XT Console Lo	g Data	
۲	080708 00:45:03 080708 00:45:03 080708 00:45:03 080708 00:45:03 080708 00:45:03 080708 00:45:03	Node ID ############ c0-0c0s7s1	#### Port Num #### 6	######################################	###### Remote Port ###### *	######################################	######################################	######################################
5	080708 00:45:03 080708 00:53:03 080708 00:53:03 080708 00:53:03 080708 00:53:03	c1-0c1s2s1 c1-0c2s2s3	2 6	c1-0c1s3s1 *	3			Deadlock Timeout, rsp1 Deadlock Timeout, Rsp Chan
	080708 00:53:03 080708 00:53:03 080708 00:53:03 080708 00:53:03 080708 00:53:03 080708 00:53:03	c1-0c2s2s2	6 0 	* c1-0c2s2s3 *	* 5 *			Deadlock Timeout, Rsp Chan Deadlock Timeout, rsp1 Bad LUT Dir, Rsp Chan
	080708 00:53:03					ay XT Netwatch Lo		

Tue Jul 8 04:01:22 2008 - rs_event_t at 0x805cd40 ev_id = 0x04004065 (ec_heartbeat_stop) ev_src = ::c0-0c2s6 ev_gen = ::c0-0c0s0n0 ev_flag = 0x00000002 ev_priority = 32 ev_len = 87 ev_seqnum = 0x00000000 ev_stp = 48732ce2.0002c0e2 [Tue Jul 8 04:01:22 2008] svcid 0: ::c0-0c2s6n2 = svid_inst=0x0/svid_type=0x0/svid_node=c0-0c2s6n2[rsn_node=0x5a/rsn_type=0x0/rsn_state=0x7], err code 65740 - node heartbeat fai ev_data 00000000: 01 00 00 00 00 00 00 00 00 00 00 00 00	ult
Example Cray XT Consumer Log Data	
26101146 KERN_0AZM_KERNELbgp_umit_dmabgp_err_dma_rec_fifo_not_avail MARM_2009-01-24-18.51.52,192605 - 0 - ANL-RD7-M1-M00-256 R07- 44V3575VL187262066 x*024028601011280A409126702024L* A 0MA unit reception FIFO is full. This is a recoverable error, but performance might be improve d by increasing the FIFO size (via environment variable DCMF_RECFIFOusize-in-bytes) or be checking the DMA FIFOs more often. Additional details: 1) torus location is (4,0,1) 2) Packet PID is 0. 1) rF1FO bit mask is 0600000001. 26101148 KERN_0403 KERNELbgp_unit_ddrbgp_err_ddr_double_symbol_error MARM_2009-01-24-18.55.09,189245 - 0 - ANL-R41-M1-512 R41- M1-M09-224 44V3575VL128733890K x*024019010000774cL10A67C38CA0* ECC-correctable double symbol error: DBM Controller 1, failing SDAW address (vu335340000, (1) BFC pin JB154, transfer 1, bit 129, BFC module pin 00%, compute trace MEMORYIDATA128, DRAM chip U31, ORAM pin CE.(2) BFC pin H2150, transfer 1, bit 132, BFC module pin N04, compute trace MDNORYODATA129, ORAM chip U%, ERRM pin C2.	
26101149 KERN_0809 KERNEL _bgs_unit_ddr _bgs_err_ddr_rbs_activated MARN 2009-01-24-18.55.09.597319 - 0 - ANL-843-M1-512 841- W1-N00-324 001 001 001 001 001 000000081, chipselect 0x00000000, controller 0x0000000, controller 0x0000000, controller 0x0000000, controller 0x00000000, controller 0x0000000, controller 0x00000000, controller 0x0000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x000000000, controller 0x00000000, controller 0x00000000, controller 0x0000000, controller 0x0000000, controller 0x0000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x0000000, controller 0x0000000, controller 0x0000000, controller 0x0000000, controller 0x0000000, controller 0x0000000, controller 0x000000, controller 0x000000, controller 0x0000000, controller 0x000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x000000000, controller 0x0000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x00000000, controller 0x000000000, controller 0x00000000, controller 0x00000000, controller 0x000000000, controller 0x0000000, controller 0x000000000, controller 0x00000000, controller	
Example BlueGene/P RAS Log Data	
Consumer – Log of all events on Cray Event Router RAS – Reliability, Accessibility, Serviceability; contains information about system and OS environment	\circ

DOOMSDAY V.S. DESH

- From here, their log-data manipulation and integrated-document collation differ:
 - Doomsday
 - Backwards pruning
 - Timestamps are correlated during all of training
 - Unknown phrases are virtually ignored
 - DeSH -
 - Phrase severity labeling
 - Phrase vector data splitting (static/dynamic)
 - Unknown phrases are lightly examined

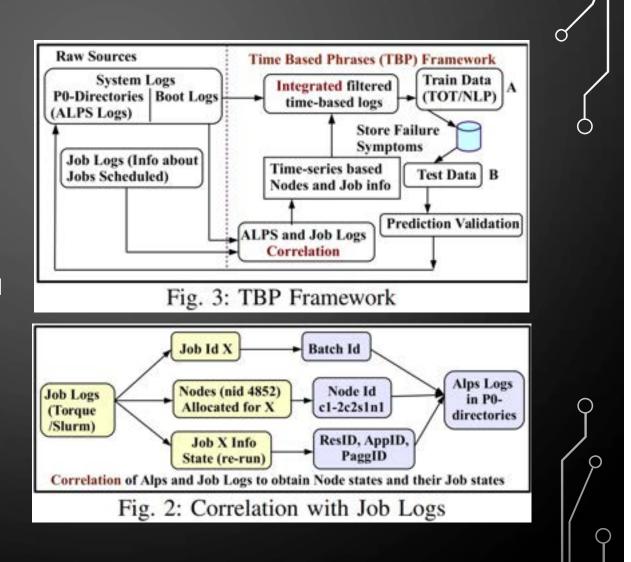
DOOMSDAY V.S. **DESH** (CONT'D)

• Unknown phrases

- Difficult to handle; their impact on node failures are unknown
- e.g. correctable MCE occurrence is so uncommon, # of topics chosen should be ≥ 150 in order to prevent TBP from discarding it as non-salient
- DeSH does much more

	TABLE XII: Difficult Correlation Extraction						
		Description					
		interrupt took X ns					
2	Console	DVS: lnet_mapuvm: page count mismatch					
		Node id has a different configuration					
4	Console	logged correctable MCEs					

Examples of difficult phrases to correlate with node failures


Source – **Dooms**day

DOOMSDAY (THE FIRST PAPER)

D

DOOMSDAY'S Solution: TBP

- **TBP** Time-Based Phrases
- A phrase extraction scheme; phrase likelihood estimation pulled from continuous time-series data to find useful log phrases

DOOMSDAY'S SOLUTION: TBP (CONT'D)

Job Logs

08/10/2015:00:00:18;Req;set_nodes;job 9747167 allocated 42 nodes 08/10/2015 00:00:49;svr_setjobstate:setting job 9747167 state

from QUEUED-QUEUED to QUEUED-SUBSTATE 08/10/2015 00:00:49;svr_setjobstate:setting job 9747167 state (from QUEUED-SUBSTATE to RUNNING-PRERUN

Alps Logs

2015-08-10700:00:20 Bound apid 57760959 resid 6175422 pagg 0x15f5000010c2 batch1d '9747167' 2015-08-10700:00:21 Placed apid 57760959 resid 6175422 pagg 0x15f5000010c2 nids: 384-405,458-460,1056-1075

2015-08-10T00:01:57 type release uid 0 gid 0 apid 57760959 pagg 0x15f5000010c2 resld 6175422 2015-08-10T00:01:57 Released apid \$7760959 resld 6175422 pagg 0x15f5000010c2 claim (numClaims 0) [Hardware Error] : CPU 12: Machine

Console Logs

2015-08-10T00:00:26 c12-1c0s1n0 [Hardware Error]: CPU 12: Machine Check Exception: 0 Bank 4: dc6440001c080813.....

2015-08-10700:00:29 c12-1c0s1n0 out of memory ...Killed 32 process... 2015-08-10700:00:29 c12-1c0s1n0 Killed process 5683 apid 57760959 total-vm:3170784kB, anon-rss:1305112kB, file-rss:8132kB,

Fig. 4: Time Correlation and Data Integration

Time Correlation of Jobs logs

57760959 iresld 6175422[pagg 0x15f5000010c2]

2015-08-10T00:00:21jjob 9747167japid

1c1s1n1..c9-2c2s2n2....)------

apid 57760959 resId 6175422) pagg

@x15f5000010c2j(node ids)...

sml.

nids: 384-405,458-460,1056-1075 ---- (C3-

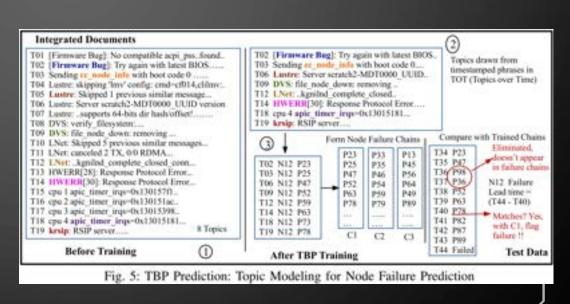
2015-08-10T00:01:57[job 9747167[Released]

Check Exception:

2015-08-10T00:00:29jc12-1c0s1n0jout

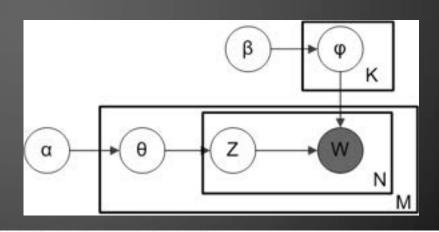
Data Integration

of memory...Killed 32 process/Killed


process 5683 apid 57760959 total-

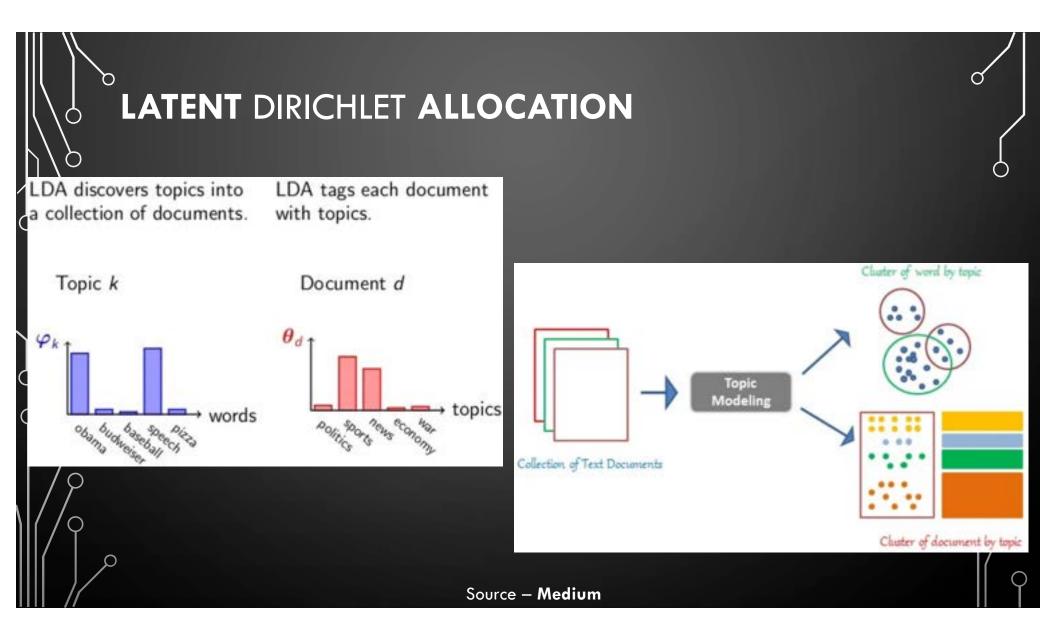
ALPS – Application-Level Placement Scheduler; resource management software designed to work across multiple nodes running independent OS instances

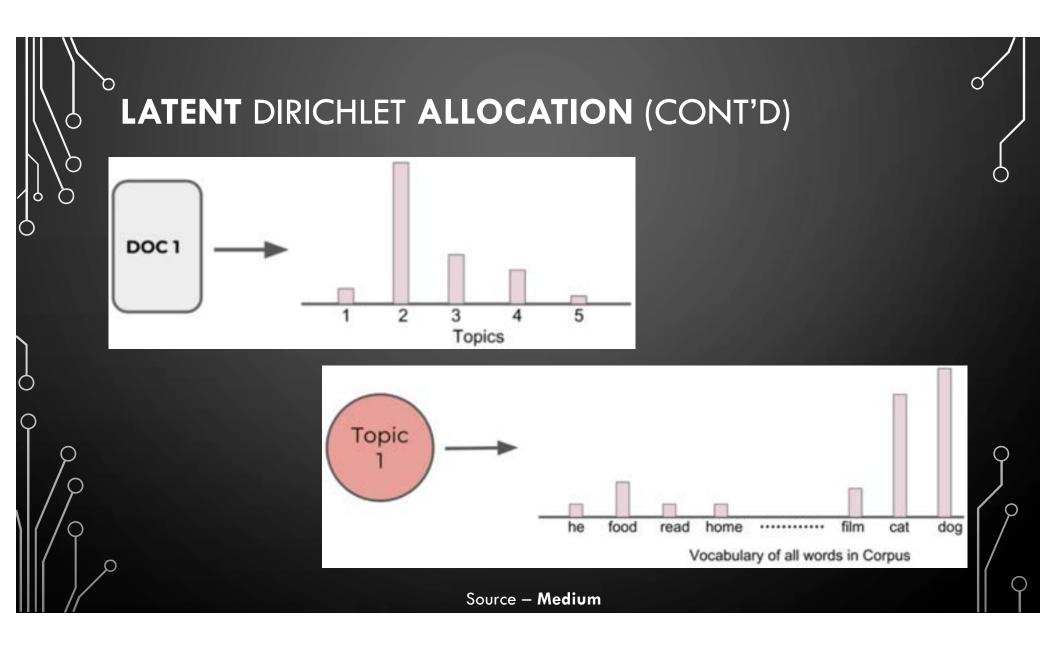
• Data & timestamp correlation process


DOOMSDAY'S SOLUTION: TBP (CONT'D)

- Employs **TOT** Topics over Time
 - A NLP technique; identifies top N topics appearing in logs, then tracks how they change over time
 - Uses Gibbs Sampling MCMC (Monte-Carlo Markov-Chain) algorithm
 - Obtains a sequence of observations from multivariate data – in this case, integrated log data
 - Used when direct sampling is difficult

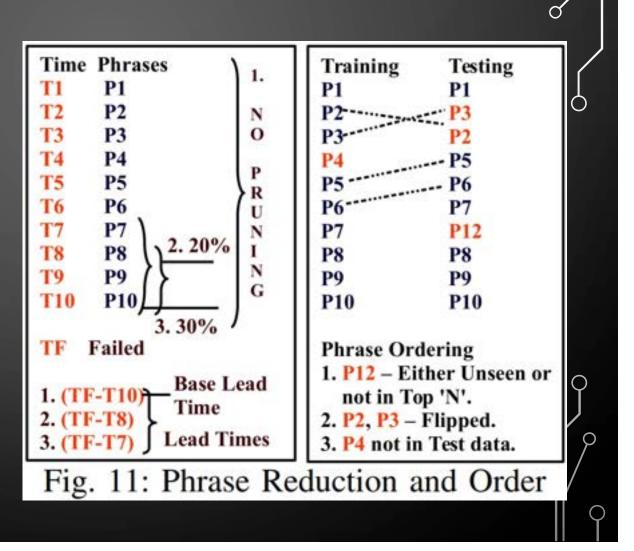
DOOMSDAY'S SOLUTION: TBP (CONT'D)

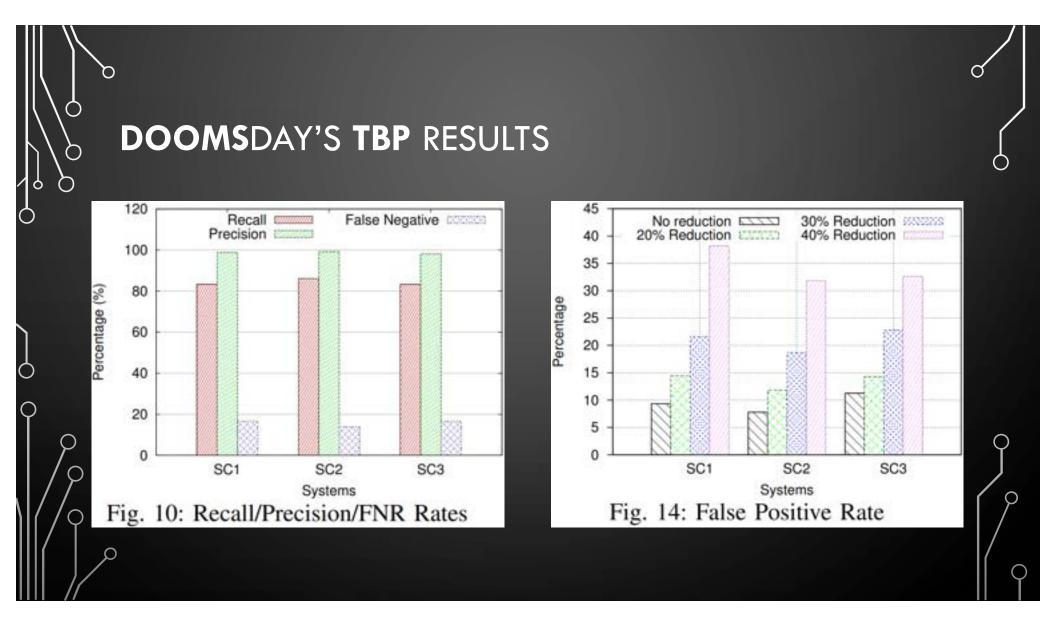

- TOT uses LDA
 - LDA Latent Dirichlet Allocation; unsupervised learning
 - Three-level hierarchical **Bayesian** model
 - $\mathbf{K} = \#$ of topics
- Documents are represented as random mixtures over latent topics, where each topic is characterized by a distribution over words
 - An algorithm for grouping words under topics and topics under documents [3, 4]



M denotes the number of documents

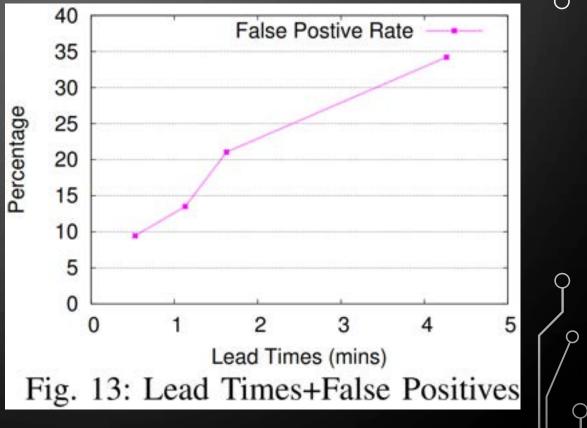
N is number of words in a given document (document *i* has N_i words) α is the parameter of the Dirichlet prior on the per-document topic distributions β is the parameter of the Dirichlet prior on the per-topic word distribution θ_i is the topic distribution for document *i* φ_k is the word distribution for topic *k*

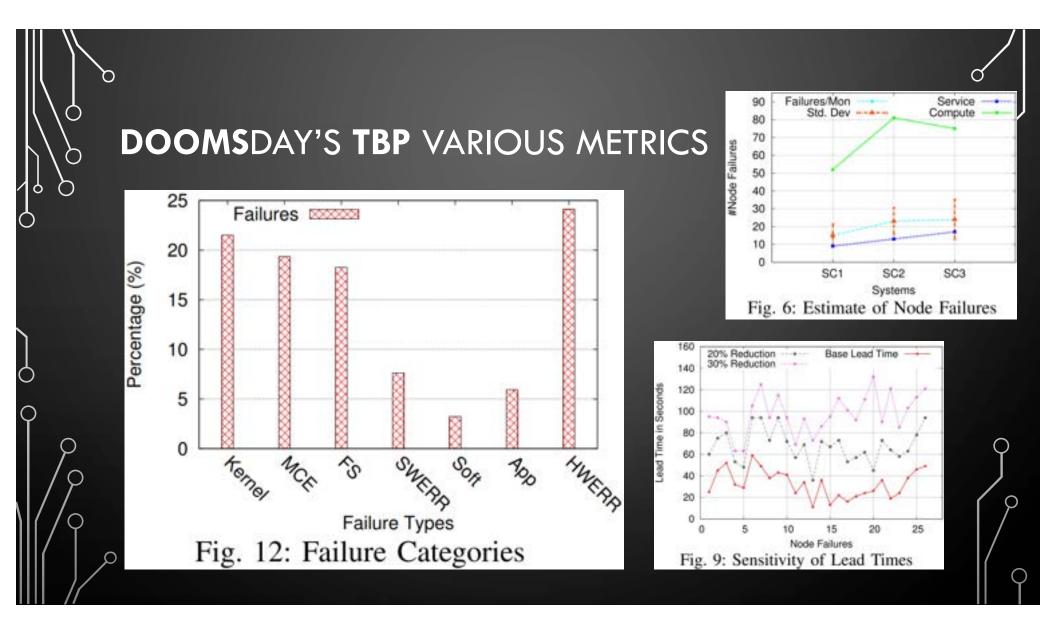

- zij is the topic for the j-th word in document i
- w_{ij} is the specific word.



DOOMSDAY'S PHRASE REDUCTION: BACK-PRUNING

- Increases prediction lead times and performance
- Enacted when enough of the failure chain has been seen in the testing data (≥ 50%)
 - 20% pruning ignore last
 20% of phrases;
 failure flagged
 - 30% pruning ignore last 30% of phrases; failure flagged



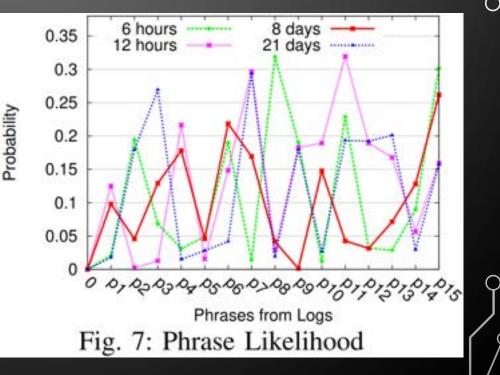


DOOMSDAY'S TBP RESULTS (CONT'D)

Prediction **lead time** increases as backpruning threshold increases

- 0.5 min 0% back-pruning
- 1.1 min 20%
- 1.6 min 30%
- 4.2 min 40%

DOOMSDAY'S TBP VARIOUS METRICS (CONT'D)


TABLE VII: Recurring Phrases

No. Phrases

- P1
 crms_wait_for_linux_boot: nodelist: *

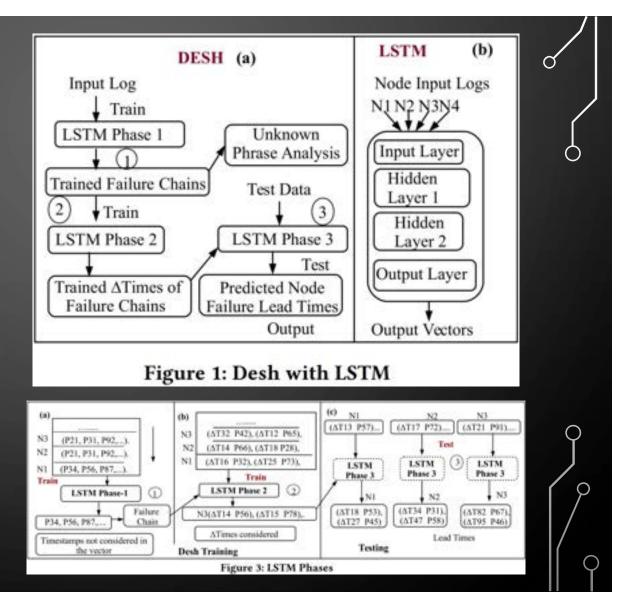
 P2
 Lnet: Quiesce start: hardware quiesce

 P3
 Wait4Boot: JUMP:KernelStart *
- P4 krsip:RSIP server * not responding
- P5 startproc: nss_ldap: failed to bind
- P6 checking on pid *
- P7 LustreError: *:*:....can't find the device name
- P8 GNII_SMSG_SEND + * P9 Nobios_settings file found
- P10 Lnet: Added LNI *
- P11 DVS: file_node_down: removing * P12 Lustre: skipped * previous similar messages
- P13 Lnet: skipped P14 <node_health:*> RESID* xtnhc FAILURES
- P15 Bad RX packet error

Q

DESH (THE SECOND PAPER)

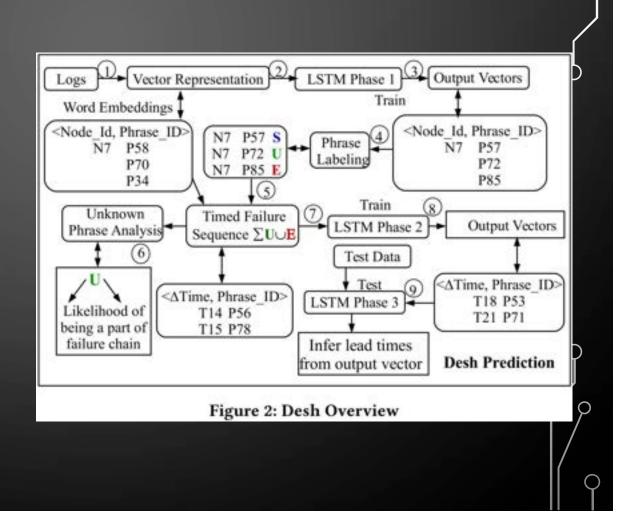
 \mathbf{C}


D

0

Ċ

DESH – THE Solution


- A stacked LSTM made up of multiple RNN layers
- Three phase training/testing scheme
 - 1) Trains failure chains per node; concatenates all failure chains
 - 2) trains delta-time/timestamps with failure chains per node; concatenates all failure chains
 - 3) Tests entire LSTM model on each node

DESH – THE Solution (Cont'd)

- The same LSTM model is updated each time
- After training, model-encoded information includes
 - Phrase inter-relational semantics

 observes phrase distributions
 across vectors as distance from
 one another (within vector)
 - General proportions of safe/unknown/error phrase messages to expect in node failures
 - **Pertinent phrase information** contributing to node failures

DESH – THE SOLUTION (CONT'D)

• LSTM structure &

hyperparameters

- **HL** hidden layers
- Steps # of upcoming phrases to predict
- HS history size; # of phrases to consider in testing data output before making prediction
- Each layer is an **RNN** encodes
 - short-term variations effectively

Table 5: LSTM Parameter Specifications

#	Input Vector	Output Vector	#HL	Steps	#HS	Loss Function, Optimizer
Phase-1	(P1, P2PN)	(P11, P15PN)	2	3	8	SGD, categorical crossentropy
Phase-2		(Δ T11, P11), (Δ T22, P22,)	2	1	5	MSE, Rmsprop
Phase-3		(Δ T15, P15), (Δ T16, P16,)	2	1	5	MSE, Rmsprop

DESH – THE Solution (Cont'd)

- Static & dynamic phrase info
 - Dynamic discarded; timedependent
 - Static kept; timeindependent
- Three phase training/testing scheme

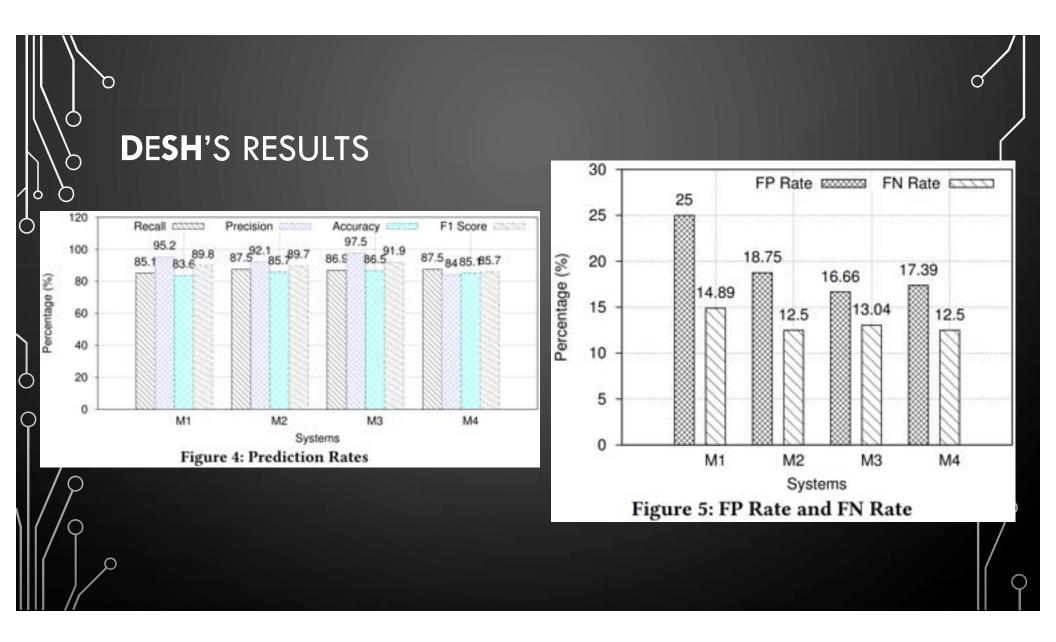
	# Timestamp (T)	Node Id (N)	Phrase (P)			
	1		Static	Dyna	mic	
	1 16:25:48.301744	c1-0c1s1n0	0c1s1n0 kernel * LNet: hard- ware quiesce *	-p0- 20141216t162520, All threads awake		
	2 16:39:59.507009	c4-0c0s0n2	Running * using val- ues from *		ctl, /sysctl.conf	
	3 00:01:16.704832	c2-0c0s15n2	hwerr * Correctable aer replay timer timeout error*		0x500:	
	4 10:47:39.417963 (T1)	c0-0c0s0n2 (N1)	hwerr *:ssid rsp a sta- tus msg protocol err error* (P1)		0x0:	
	Tab	le 4: Exam	ple Failure Cha	in		
	Timestamp	Phrase		Label	Phrase Vector	
1	and the second	CPU *: Mad tion:	CPU *: Machine Check Excep tion:		ΔT1=07.822, P1	
2	03:59:59.543 (T2)	The second second	Error]: Run the	U	ΔT2=06.745, P2	

 #
 Timestamp
 Phrase
 Label
 Phrase Vector

 P1
 03:59:58.466 (T1)
 CPU *: Machine Check Excep-U tion:
 ΔT1=07.822, P1

 P2
 03:59:59.543 (T2)
 [Hardware Error]: Run the U above through 'mcelog –ascii
 ΔT2=06.745, P2

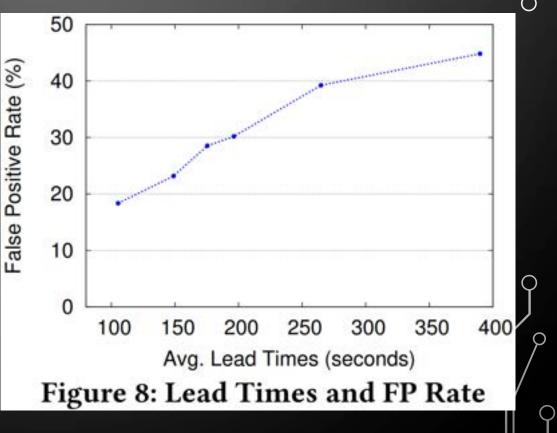
 P3
 04:00:00.477 (T3)
 [Hardware Error]: RIP !INEX-U ACT! 10:
 ΔT3=05.811, P3

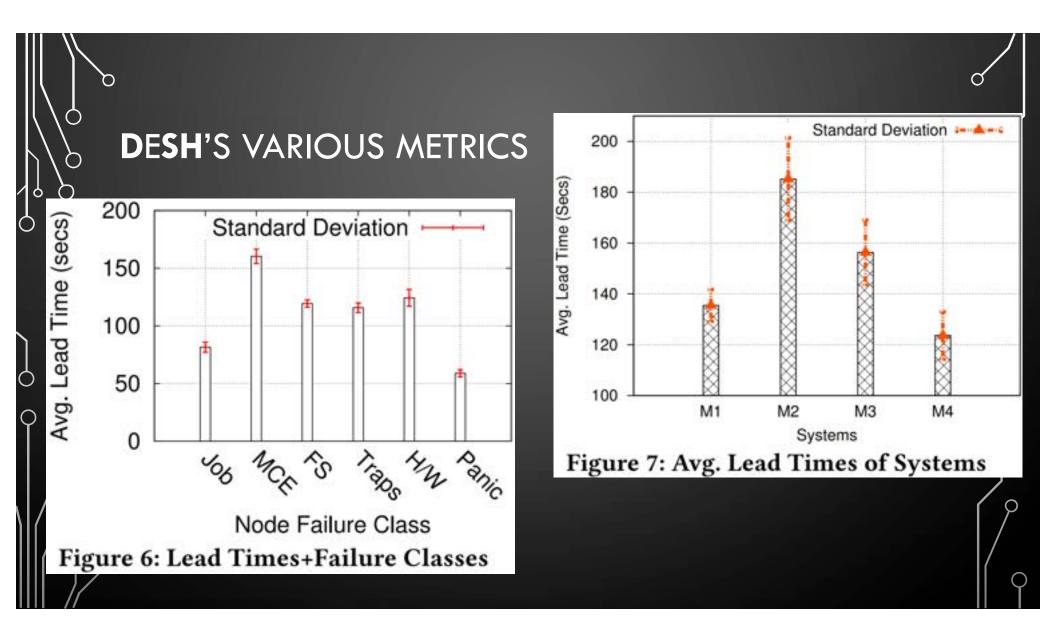

 P4
 04:00:01.706 (T4)
 Kernel panic - not syncing: Fatal Machine check
 E
 ΔT4=04.582, P4

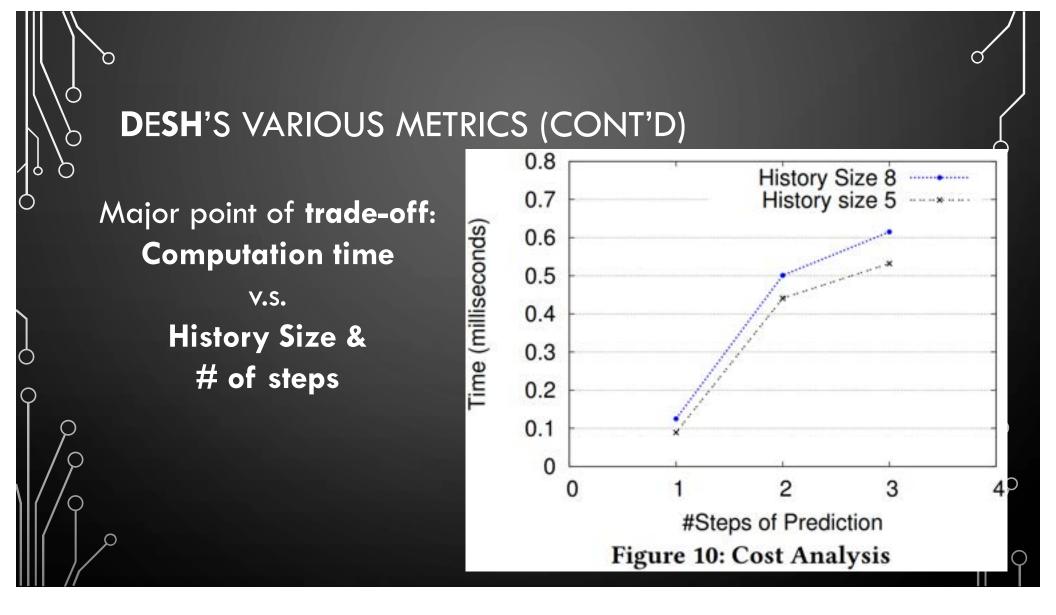
 P5
 04:00:01.731 (T5)
 Call Trace:
 E
 ΔT5=04.557, P5

 P6
 04:00:06.288 (T6) cb_node_unavailable
 E
 ΔT6=00:000, P6

Q

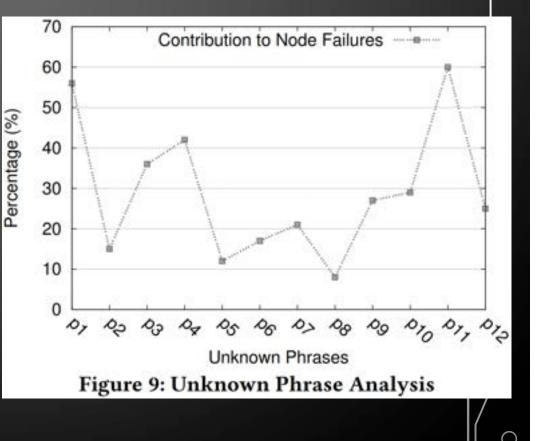

 \bigcirc




DESH'S RESULTS (CONT'D)

Major point of trade-off: False alarm rate

> v.s. Avg. lead time



DESH – HANDLING UNKNOWN PHRASES

#	Phrase	(%
P1	LustreError *	56
P2	Out of Memory/Killed Process	15
P3	Lnet: Critical H/W error	36
P4	Slurm load partitions error: Unable to contact slurm controller	42
P5	hwerr[*]: Correctable AER_BAD_TLP Error *	12
P6	Sent shutdown to llmrd at process *	17
P7	AER: Multiple corrected error recvd *	21
P8	Trap invalid code * Error *	8
P9	modprobe: Fatal: Module * not found *	27
P10	<node_health> * Warning: program * returned with exit code *</node_health>	29
P11	DVS: Verify Filesystem	60
P12	BUG: unable to handle kernel NULL pointer dereference	25

 \checkmark

DESH – HANDLING UNKNOWN PHRASES (CONT'D)

Failure 1	Failure 2	Not Failure 1	Not Failure 2
H/W Error: MCE Logged	LustreError *	nscd: nss_ldap reconnected	LustreError: Skipped
2 Corrected Memory Errors on Page *	DVS: Verify Filesystem: *	<node_health> program * returned with exit code *</node_health>	nscd: nss_ldap reconnected
3 <node_health> program * returned with exit code *</node_health>	DVS: * no servers functioning properly	Trap Invalid Code	Hw Error: MCE Logged
1 mce_notify_irq: *	Startproc: nss_ldap: failed	Killed process *	Corrected DIMM Memory Errors
5 Lnet: critical hardware error: *	Stop NMI Detected	Out of memory *	MCE_notify_IRQ
	Slurm load partitions error: Unable to contact slurm controller	Lustre: * binary skipped *	Lnet: H/W Quiesce
7 Stop NMI Detected	Slurmd Stopped	hwerr[*]: RSP A_status_msg_protocol_error*	Corrected Memory Errors on Page
8 <node_health> warning: * node is down</node_health>	System: halted	<node_health> * failures: The following tests * failed</node_health>	Lustre: * connected to *

0. Unknown Dhases with and without Made Failure.

- Example log phrase sequences; not failure chains
- Unknown phrases occur in both benign and failure chains
 - Unknown phrases by themselves DO NOT contribute to node failures; unknown phrases in context to other phrases DO contribute to node failures

TRIGGERING PROACTIVE/PREEMPTIVE MEASURES

r

PROACTIVE **MEASURES**

Depending on error: Can be triggered between **20 seconds and 2 minutes** in **advance**

- They include the following:
 - Efficient (lazy) checkpointing
 - There are studies being conducted to optimize checkpointing timing
 - Node quarantining & process/job migration
 - Can avoid 5 9% of node failures if nodes are quarantined
 - Migration takes between 0.29 24.4 seconds on average

PROACTIVE **MEASURES** (CONT'D)

- They include the following (Cont'd):
 - Root cause diagnosis (NOTE: extremely complex)
 - Node cloning
 - Saves on redundant executions
 - Preemptive node examination
 - Lowers MTTI

The key: lower false alarm rate

MTTI – Mean Time to Interrupt; how long on average it takes an application to finish executing or be interrupted

At time of Doomsday paper, this work was **mostly the first of its kind;** most (if not all) other papers addressed the same issues with **variations in solution approaches**

Solutions	Method	Lead Time	Recall	System	Location
Hora [34]	Bayesian Networks	10 mins	18%	Dist. RSS Feed Reader	Component specific
Zheng+ [21]	Genetic Algorithms	10 mins	60%	Blue Gene/P	Rack-level
Li+ [7]	SVM, KMeans	10 mins	N/A	Blue Gene/P, Glory	Component with sensor
A REAL PROPERTY OF THE REAL PR	Stochastic Model, Clustering	N/A	N/A	256 node HPC cluster	H/W, S/W components
[20]	Decision Tree (DT)	N/A	80%	HPC (LANL)	Node-level
[17]	Neural-gas [36]	N/A	N/A	Blue Gene	Node-level
[35]	SVM/DT/MLP etc.	17, 22 mins	91.34%	HPC cluster	Node-level
TBP	Topic Modeling	2 mins		Cray	Node-level

Neural Gas – an unsupervised neural network topology learning algorithm that finds general, multilabel data classifications from feature vectors; a generalization of k-means; can classify feature vectors within multiple labels

Source – **Dooms**day

Ç

Solutions	Method	Lead Time	Recall	Precision	Anomaly Injection	System	Location
Hora [38]	Bayesian Networks	10 mins	83.3%	41.9%	1	Dist. RSS Feed Reader	component specific
Gainaru et al. [21]	Signal Analysis	N/A	60%	85%	×	Blue Waters	N/A
Islam et al. [29]	Deep Learning	N/A	85%	89%	×	Google Cluster	Job-level
UBL [14]	Self-Organizing Map (SOM)	50 secs	N/A	N/A	1	RUBiS, Hadoop, System S	N/A
CloudSeer [45]	Automatons, FSMs	N/A	90%	83.08%	~	OpenStack	N/A
Desh	Deep Learning	3 mins	86%	92.2%	×	Cray	node-level

 \cap

 \bigcirc

 \square

Ο

D

1º 0

 \bigcirc

 \bigcirc

Both use stacked LSTM

Other solutions label & augment logs from source; DeSH does not

#	Features	Desh	DLog
1	No Source-Code	\checkmark	\checkmark
2	Lead Time	\checkmark	×
3	Component location	\checkmark	×
4	Sequence-level Anomaly	\checkmark	×
5	Injected Failures	×	\checkmark
6	Node Failures	\checkmark	×
7	Cloud+HPC	×	\checkmark
8	False Positive Rate	\checkmark	×

Source – DeSH

THE MODEL ISN'T ACTUALLY LEARNING ANYTHING

 \mathcal{D}

WHY IS NO TRUE LEARNING HAPPENING?

 Has no idea what any of the log phrases actually mean

 The log phrases actually do mean something; that's not what the model is learning

 Only 'memorizes' (learns) what log event(s) to expect next from a given node

WHY IS NO TRUE LEARNING HAPPENING? (CONT'D)

• Unable to diagnose actual node issue

• Can **only flag** a **failure** before it occurs and then **trigger** counteractive/preventative **measures**

- "system anomaly #/type ≥ threshold = impending node failure"
 - This is all that the model really knows

SOURCES

- A. Das, F. Mueller, P. Hargrove, E. Roman and S. Baden, "Doomsday: Predicting Which Node Will Fail When on Supercomputers," SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA, 2018, pp. 108-121, doi: 10.1109/SC.2018.00012.
- Das, Anwesha & Mueller, Frank & Siegel, Charles & Vishnu, Abhinav. (2018). Desh: Deep Learning for System Health Prediction of Lead Times to Failure in HPC. 40-51. 10.1145/3208040.3208051.
- Blei, David M., et al. "Latent Dirichlet Allocation." Journal of Machine Learning Research, JMLR, Jan. 2003, https://jmlr.org/papers/volume3/blei03a/blei03a.pdf.
- 4. https://medium.com/analytics-vidhya/latent-dirichelt-allocation-1ec8729589d4

