
BLISS: Auto-tuning Complex Applications using a 

Pool of Diverse Lightweight Learning Models

Authors: Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, Devesh Tiwari
Presented by: Jonathan Lorray



Introduction
What is it all about?

01



What is Auto-Tuning

"Why do it yourself, when robots do it better?"

Hyperparameters (or knobs in the case of HPCs) are variables that 

control the overall behavior of a system and are defined before 

you even run it.

Auto-tuning is the systematic exploration of the hyperparameter 

space to find the best combination of hyperparameter values. 

The goal of auto-tuning is to minimize the amount of manual trial 

and error required to find the best hyperparameter configuration.



As parallel applications become more complex, auto-tuning becomes more desirable, challenging, and time-
consuming

The Search space of tunable parameters for complex systems are often prohibitively large, and expensive to 
explore

Most state-of-the-art methods rely on variants of learning based strategies that produce suboptimal results:

● Traditional learning strategies are prone to get stuck in local minima

● Most ML-based approaches need to build complex and powerful models

○ Require extensive training with a prohibitively large number of samples before they’re useful

○ A single ml-model may not be able to effectively capture the diversity within and across an applications’ 
search space of tunable parameters

Auto-Tuning: Context and Motivation



Challenge 1: Finding the optimal set of parameters requires exhaustively 

exploring a large multidimensional search space.

Exploring such search spaces can be prohibitively expensive due to 

having to run on real hardware. (see Fig. a)

Requires quick elimination of low interest areas to keep costs low, but 

you run the risk of missing the optimal configuration. (see Fig. b)

Auto-tuning Challenges: Search Space

Number of tunable parallel application and hardware-level parameters, and the corresponding search space size for different parallel applications 
used in this study.

(a) The CDF of the execution times of 500 
randomly selected AMG configurations shows that 

the execution times are far from the Oracle
(b) AMG’s execution times vary even when only 

two parameters are varied (others are fixed)

Note: Oracle refers to the best (lowest runtime) configuration available



Challenge 2: Naïve auto-tuning solutions 

result far from optimal configurations, and 

capturing the interactions between 

application and hardware-level tuning 

knobs is the key to achieving the highest 

performance.

Auto-tuning Challenges: Naïve Solutions

(a) Distance from the Oracle when the best configuration is 
reached by one-parameter-at-a-time tuning is high

(b) The Oracle by tuning only hardware (application params 
are fixed at mid range values) and only application params 

(hardware params are fixed at mid range values)

Note: Oracle refers to the best (lowest runtime) configuration available

(c) Oracle parameter configuration and the optimal 
execution time varies greatly with the input size.



“One-Parameter-at-a-Time Tuning”

Appears promising as it drastically reduces the search space size 

However, using this method results in configs 100% or more from 

oracle, meaning a slowdown of 2x (see Fig. a)

Auto-tuning Challenges: Naïve Solutions

(a) Distance from the Oracle when the best configuration is 
reached by one-parameter-at-a-time tuning is high

Note: Oracle refers to the best (lowest runtime) configuration available



Exclusive Hardware/Application Tuning

Expedite the optimal configuration search process by 

restricting the search space. 

● For example, targeting only one type of knob 

(hardware level or application-level) to reduce the 

search space

Trying to tune the knobs in this way, consistently results in 

oracle configurations that are worse than when you try to 

tune both types jointly (see Fig. b)

Auto-tuning Challenges: Naïve Solutions

(b) The Oracle by tuning only hardware (application params are fixed 
at mid range values) and only application params (hardware params are 

fixed at mid range values)

Note: Oracle refers to the best (lowest runtime) configuration available



Straw-Man Solution

Auto-tune an application on a smaller problem size, and 

use the same solution (optimal values of parameters) 

when running the application with a larger input

Although it performs far better than previously mentioned 

Naïve methods, this method can result in configurations 

that deviate up to 15% from oracle. (see Fig. c)

Auto-tuning Challenges: Naïve Solutions

(c) Oracle parameter configuration and the optimal execution time varies 
greatly with the input size.

Note: Oracle refers to the best (lowest runtime) configuration available



The Latest 
Solution

What the whole paper is about

02



BLISS Auto-tuner

BLISS is a novel solution for auto-tuning parallel 

applications, that explores the large configuration 

space efficiently using a Bayesian Optimization (BO) 

based approach.

Compared to most state-of-the-art methods, 

BLISS…
● Doesn’t require prior knowledge of the 

application and its parameters

● Doesn’t require prior knowledge of the 
instrumentation or hardware parameters

● Doesn’t require prior knowledge specific to 
the domain



BLISS Auto-tuner

Leverages a pool of diverse lightweight Bayesian 

Optimization models to find the near-optimal 

parameter settings for auto-tuning complex 

applications

Builds a model that captures the shape and distribution 

of the underlying configuration search space by 

incrementally “sampling” different configurations, and 

refines this model over time to find the optimal 

solution

Does not rely on deep learning, transfer learning, or any 

pre-trained models, making it application-independent



Bliss Evaluation
BLISS compared to State-of-the-
Art techniques:
● Oracle (offline optimal)
● OpenTuner
● Active Harmony (v4.6)
● GEIST

BLISS outperforms existing state-of-the-art techniques in:
● Fewer samples/configurations evaluated
● Less time needed to reach high-performing configuration 

(near-optimal performance)

Figures 9 and 10 illustrate the number of samples and the 
amount of time needed for BLISS to find configurations that are 
within 20%, 15%, 10%, and 5% of Oracle performance



Bliss Evaluation
BLISS compared to Deep Neural 
Network based solutions:
Bliss strikes a balance between the 
quality of the solution and the 
training overhead

Online-DNN: an online technique where the DNN model is built purely using 
online configuration samples without any pre-training (no offline overhead, 
similar to Bliss)
Hybrid-DNN: a predetermined portion of the configurations are sampled 
offline to initialize the DNN model and the model continues to be updated 
as online samples are collected (high offline overhead)



Bliss Evaluation



Bayesian 
Optimization

The Backbone of BLISS

03



Bayesian Optimization (BO)

BO is a black-box optimization method for minimizing an unknown 

objective function, and is used in cases where it is costly to find the 

value of the objective function for all values in the search space.

Initially, BO has zero knowledge of the objective function and its relation 

to the input, but by intelligently querying the objective function for 

selected inputs, BO develops an approximation of the objective function 

over the entire search space.

Overall Steps
1. Define the Objective Function
2. Build/Choose a Surrogate Model
3. Build/Choose an Acquisition Function
4. Initialize the whole process and the Iterative optimization loop



Bayes Optimizer Step 1: The Objective Function

First, determine the Objective Function you wish to optimize, even if its exact details are unknown. 

The objective function should accept a set of inputs and return a scalar value that you aim to 

maximize or minimize. 

In this scenario, the objective function represents the runtime, while the hyper parameter inputs consist of 

hardware and application settings.



Bayes Optimizer Step 2: The Surrogate Model

Bayesian Optimization employs a Surrogate Model to approximate the objective function. 

A Surrogate Model is, by definition, "a probabilistic representation of the objective function," essentially 

training on (input, true objective function score) pairs.

The Gaussian Process (GP) is the most prevalent choice for a surrogate model, including in BLISS:

● It is a probabilistic model that offers a function distribution based on a set of observations. 

● Capable of modeling intricate functions with uncertainty estimates, GPs are advantageous for 
balancing exploration and exploitation. 

Initiate the Surrogate Model using the sampled 
objective function (input, output) pairs.

samples from the 
true objective 
function



Bayes Optimizer Step 3: The Acquisition Model
The Acquisition Function directs the search for optimal input values by 

assessing the anticipated value of each potential point when aiming to 

minimize the objective function.

The acquisition function strikes a balance between:

- Exploration (searching unexplored regions of the search space) 

- Exploitation (focusing on regions with high predicted 
performance)

The optimal acquisition function depends on the search space's 

dynamics and how adjacent configurations interact. 

For BLISS, the acquisition function is selected during runtime after 

assessing the search space.



Once you have your Objective function, Surrogate Model, and 
Acquisition function, you initialize and perform the Iterative 
Optimization Loop:

1. Fit the Surrogate Model to the current set of input-
output pairs 

2. Optimize Pick the next input to evaluate the Objective 
Function with by finding the argmax of the 
Acquisition Function

3. Sample a true value of the Objective Function using 
the chosen input from the previous step.

4. Add the new input-output pair to the existing dataset 
and refit the Surrogate Model.

5. Check the Stopping Criterion, and Repeat steps 1-5 if 
the predefined stopping criterion is not satisfied

Bayes Optimizer Step 4: The Optimization Loop



Multi-Model 
Auto-tuning

What makes it special

04



BLISS: Multi-Model Auto-Tuning

BLISS implements a new auto-tuning technique that’s based on multiple Bayesian Optimization (BO) models

Instantiates multiple BO models, with varying surrogate model kernels & acquisition functions

Iteratively samples new configurations, updates BO models

Goal: Ensure the most suitable BO model guides the auto-tuning process



BLISS: Multi-Model Auto-Tuning

At each iteration (configuration selection & evaluation):

● BLISS considers all existing BO models in the pool

● Probabilistically selects a BO model

○ The BO model corresponding to the best configuration so far simply has a higher chance of 

selection, and is not an automatic pick.

● The selected BO model has its surrogate model refitted to the sampled points



BLISS: Multi-Model Auto-Tuning

At each iteration (configuration selection & evaluation):

● The Chosen BO model's acquisition function picks the next configuration to evaluate

● The next configuration is evaluated, and is added with its runtime to the sampled configuration set

● The probabilities of the BO models are updated

● Repeat



Interesting 
and Positive 

Points Random Interesting things

05



Predicting when to Skip Sampling

● Bliss skips sampling and instead uses the surrogate model's prediction as a proxy for runtime when 

the prediction of the surrogate model is close enough to the true objective function.

● Bliss skips sampling if the difference between the predicted performance metric and the true 

performance metric is less than a certain threshold.

● An inaccurate prediction can misguide the acquisition function. To address this, Bliss estimates the 

prediction inaccuracy for a window of previously sampled configurations. 

● The prediction window is defined as the number of consecutive configurations for which samples 

can be skipped and replaced with the predicted value.

Tpred: Predicted values
Ttrue: True Runtime
Wp: Length of the Prediction 
history window
Lmax: Maximum number of 
samples BLISS can skip



Allowing Surrogate Models to Mature

● A major flaw with skipping is that it relies on the surrogate model having low prediction error

● To address the flaw, BLISS iteratively updates surrogate models over time to increase their accuracy, 

and intentionally delays predicting the execution times of configurations until the surrogate 

functions are mature enough to make accurate predictions

● To measure the maturity of a surrogate model, Bliss checks the differences between the predicted 

values (Tpred) of the objective function for a certain number of configurations (Wm) and the true values 

(Ttrue) at those configurations

Tpred: Predicted values
Ttrue: True Runtime
Wm: Maturity history window
dmax: Number of samples

the number of samples by which Bliss should delay its prediction (d) is:



Portability Aid

● A desirable feature for auto-tuning is the ability to reduce the auto-tuning time when the underlying 

hardware platform changes

● Bliss employs a simple portability-aid to accomplish this goal:

○ Prunes the search space on the new platform by remembering the combinations of the values 

of software parameters that resulted in long runtimes

○ Simply filters the parameter values of application-level knobs that are not promising

○ Sets a sufficiently high runtime threshold (> 3x Oracle) for high confidence in suggested 

prunings



Some positive Points

● Github Repository: The authors have a public Github repo that contains the BLISS script, and the 

sample applications used in the papers

● Good Explanations of the Results: The paper provides sufficient explanations of the methodology 

used, and explains the results in an easy-to-understand manner. The figures are also informative and 

easy to visualize the results with.



Limitations 
& Negative 

Points Random less Interesting things

06



Limitations and Suboptimal Situations

Limited to Single-Objective Optimization: BLISS is designed for single-objective optimization, and may perform 

suboptimally if used in a situation where you need to optimize and strike a balance between multiple metrics

Limited to Expensive Evaluations: Bliss is designed for applications where configuration evaluation is 

expensive, meaning it may not be cost or time effective for applications where the evaluation of each 

configuration is cheap

Limited to Small Search Spaces: Although Bliss has been shown to scale well when increasing the number of 

possible configurations by adding new parameters, it may still face challenges when dealing with excessively 

large search spaces.
Despite these limitations, BLISS outperforms state-of-the-art solutions by a factor of 1.6x in total time to reach 

near-optimal solutions on average, and significantly lower computation cost for auto-tuning complex 

applications.



Negative Points

Limited Evaluation on Real-World Applications: The paper only evaluates BLISS on a small and limited set of 

real-world applications, which may be under representative of its possible use cases.

Limited Discussion about Limitations or Challenges: The paper discusses some, but not many of the possible 

limitations of BLISS, and it doesn’t go into much detail about the ones that it does mention.

Small Communication Errors: Although the paper as a whole is relatively well written, there are some sentences 

that have a confusing flow to them, or talks about something in a weird way. There are also small typos and 

random dashes scattered throughout the paper.



Conclusion
Random less Interesting things

07



Why the Paper should be Accepted

A Novel Approach: Bliss presents an approach to auto-tuning large-scale and complex applications using 

Bayesian Optimization, which hasn't had much exploration up to this point compared to other more popular 

methods. 

Advancements in the Use of Bayesian Optimizers: It introduces a novel technique to leverage multiple Bayesian 

Optimizers, rather than relying on only one, like you would normally do when using Bayesian Optimization for 

hyperparameter tuning

Improved Performance: The paper shows that Bliss outperforms other state-of-the-art solutions, both in terms 

of total time taken and number of samples needed to reach near-optimal solutions, while requiring significantly 

less computational cost compared to other methods for auto-tuning complex applications.


