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What is the paper about?

=A program can be characterized by its memory access patterns. These patterns are analyzed
using Machine Learning.

*These memory accesses are characterized by a sequence of “cache miss rates”.

*A new data set is created. This set draws from programs run on various JVMs, C, and Fortran
compilers.

=Answer the question: How predictable is a program’s cache miss rate as it executes?




What is a cache miss?

*Modern computers used a deep memory hierarchy.

|t consists of Level 1 data and instruction caches, Level 2 combined caches, and main memory.
*When data is not found in a particular cache it is termed as a miss.

*The miss rate can affect performance greatly.

"How predictable is a program’s miss rate?




Benchmarks

=To evaluate the efficiency of compilers during a program run certain benchmarks are developed.
=C, C++ have benchmarks like SPEC CPU 2000
=Java programs have benchmarks like DaCapo.

This paper uses these benchmarks to predict the cache miss rates for the programs.




SPEC CINT2000 Summary
ASUS Computer International Asus M2N32-SLI Deluxe, AMD Athlon (TM) 64 4200+
Sat Jul 10 20:58:20 2004

SPEC License #13 Test date: Jul-2006 Hardware availability: Jun-2006
Tester: Intel Corporation Software availability: Jun-2006
Base Base Base Peak Peak Peak
Benchmarks Ref Time Run Time Ratio Ref Time Run Time Ratio
164.gzip 1400 115 1215 1400 115 1215
164.gzip 1400 115 1215% 1400 115 1215% )
164.gzip 1400 115 1215 1400 115 1215 Example Results from results txt:
175.vpr w0 145 o5 1m0 a1 ol [code]===== DaCapo antlr starting =====
.vpr B
175.vpr 1400 142 970% 1400 141 993 DaCapo antlr PASSED in 4630 msec =====
176.gcc 1100 75.5 1457 1100 75.0 1466 DaCapo bloat starting =====
176.gcc 1100 75.3 1461 1100 74.9 1468% P
176.gcc 1100 75.4 1458* 1100 74.9 1469 DaCapo bloat PASS_ED in 61779 msec =====
181.mcf 1800 176 1024 1800 160 1126%* DaCapo hsq[db starting =====
181.mcf 1800 176 1020%* 1800 162 1112  EATO e e
181.mcf 1800 178 1013 1800 160 1127 DaCapo _hsq|db PASSED in 5079 msec =====
186.crafty 1000 71.8 1392 1000 65.1 1535 DaCapo jython starting =====
186.crafty 1000 71.8 1393 1000 65.0 1537 ; in YAE24 meor —————
186.crafty 1000 71.8 1393% 1000 65.1 1536% DaCapo jython PASSE,D in 24531 msec
197.parser 1800 137 1313 1800 137 1310 DaCapo lusearch starting =====
197.parser 1800 137 1314 1800 137 1311 DaCapO lusearch PASSED in 3396 msec =====
197.parser 1800 137 1313% 1800 137 1311% : T
252.eon 1300 67.3 1932 1300 53.8 2418 DaCapo luindex starting =====
252.eon 1300 67.1 1937 1300 53.6 2426 DaCapO |u|ndex PASSED in 6203 msec =====
252.e0n 1300 67.1 1936* 1300 53.6 2424% DaC d starting =====
253.perlbmk 1800 125 1443 1800 125 1443 atapo pmd starting =====
253.perlbmk 1800 125 1445 1800 125 1445 DaCapo pmd PASSED in 24445 msec =====
253.perlbmk 1800 125 1445% 1800 125 1445% .
254.gap 1100 70.9 1551 1100 70.9 1551 DaCapo xalan starting R
254.gap 1100 71.2 1546* 1100 71.2 1546* DaCapo xalan PASSED in 14990 msec =====[/code]T
254.gap 1100 71.5 1539 1100 71.5 1539
255.vortex 1900 86.6 2195 1900 80.0 2374
255.vortex 1900 86.5 2197* 1900 79.9 2378
255.vortex 1900 86.5 2197 1900 79.9 2377%
256.bzip2 1500 139 1078 1500 137 1095%
256.bzip2 1500 139 1077* 1500 137 1095
256.bzip2 1500 139 1077 1500 137 1095
300. twolf 3000 282 1064* 3000 250 1202
300. twolf 3000 282 1065 3000 251 1197%
300. twolf 3000 282 1062 3000 251 1195
164.gzip 1400 115 1215% 1400 115 1215%




ANN

“ANNs learn from sequences to predict unseen patterns in NLP.

“In this paper ANN sequence Iearnin§ techniques are applied to study sequences
of cache miss rates and find the predictability of these sequences and how they
vary across programs.

Data Set

For the SPEC CPU 2000 programs and DaCaloo Java programs, traces of every
memory access made by the program in Valgrind (Lackey tool) is captured.




Traces of memory access are just processor accesses giving information like:

<time> <scale> {<cpu>} M<rw><sz><attrib> <addr> <data>

Valgrind is an instrumentation framework for building dynamic analysis tools. There are Valgrind
tools that can automatically detect many memory management and threading bugs, and profile
your programs in detail.

tutorialadda@tutorialadda:~/valgrind$

tutorialadda@tutorialadda: algrind$ gcc -o test test.c -g
tutorialadda@tutorialadda: algrind$

tutorialadda@tutorialadda: grind$ valgrind --tool=memcheck --leak-check=yes ./test
==11345== Memcheck, a memory error detector

==11345== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==11345== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==11345== Command: ./test

==11345==

==11345==

==11345== HEAP SUMMARY:

==11345== in use at exit: © bytes in 0 blocks

==11345== total heap usage: 2 allocs, 2 frees, 25 bytes allocated
==11345==

==11345== All heap blocks were freed -- no leaks are possible

==11345==

==11345== For counts of detected and suppressed errors, rerun with: -v
==11345== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
tutorialadda@tutorialadda:~/valgrind$ I




They mapped virtual addresses to their 64-byte virtual cache line.
Applied the least recently used (LRU) stack algorithm [4] to obtain miss rates for

various cache sizes.

The rates are aggregated over windows of 1,000,000 instructions, for instruction accesses only,
data only, and both. Thus they obtain six sequences of numbers in the range [0,1] from each trace
(two cache line sizes x instruction only, data only, both).

Data preprocessing

The cache miss rates are transformed using log10 to show the miss rates close to 0.
To avoid 0 a small epsilon is added to the miss rates.

Values less than -6 is mapped to -6




Models

*Three different kinds of ANNs are used.

=All models have the following characteristics:
= They are auto-regressive.
= Have discretized representation in the input and output space.
= Are commonly applied to sequence learning tasks.

LSTM:

= Long short-term memory networks.

= They are successful in sequential modeling because they can capture short and long-term
dependencies in sequential data.

= Unrolling LSTMs is a way to transform the recurrent calculations into a single graph without
recurrence. It leads to faster processing but consumes more memory.




LSTM contd...

*Doing this beyond a particular time step in the history of a sequence leads to heavy
computation and vanishing gradient issues.

=When there are more layers in the network, the value of the product of the derivative decreases
until at some point the partial derivative of the loss function approaches a value close to zero,
and the partial derivative vanishes. This is called the vanishing gradient problem.

*The model accounts for this by allowing unrolling up to a finite number of time steps.
*This model consists of an LSTM layer followed by three fully connected layers.
*The hidden state is forwarded to the next prediction of the model.

*The hidden state contains information about the values prior to the current time step.




WaveNet

*There have been advances in raw audio wave form generation from text and also from
preceding audio stream using ANNSs.

=The similarity, albeit weak, between modeling raw audio wave forms and cache miss rates stems
from the fact that the both sequences have high frequency components and span a finite range
of values

"The problem of predicting cache miss rates is analogous to conditional wavelets.

*This paper has modified the WaveNet architecture by replacing the p—-law encoding and
decoding layers with a linear one.

*Their reasoning for this is that p—law encoding ignores outliers, and the mid-range values make
fine-grained distinctions, which need not apply in this case.

*This paper omits stacked dilations, which is a type of convolution. They instead use dilations
ranging from 2 to 512, increasing exponentially.




Sample RNN

=Sample RNN has achieved good results for audio waveform generation.

=Unlike WaveNet it uses RNNs at different times to model long-term dependencies instead of
dilated convolutions.

Experimental Results and Insights

"The sequence is discretized into 256 channels for all three models.

*The models are trained to minimize the negative log-likelihood, which is the method of
estimating the parameters of an assumed probability distribution, given some observed data.
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Figure 4: Log Likelihood for Java Virtual Machines

The three VMs have different likelihood estimates.

The majority of the memory traces can be ordered as HotSpot, J9, and Jikes RVM (lowest to
highest likelihood) and considering that log-likelihoods correspond to the predictability of the
traces Jikes RVM is seen to have the highest predictability and HotSpot the

lowest.

This can be attributed to the fact that Jikes RVM uses only compiled execution while

HotSpot combines interpretation and compilation, so its access patterns vary more.
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Figure 3: Log Likelihood for C and Fortran Programs

This figure shows how C/Fortran traces differ in log-likelihood.

Fortran programs show very high predictability compared to C programs, which are spread
across the likelihood spectrum.

The higher predictability of Fortran traces may be because many Fortran programs emphasize
regular processing across dense arrays, while C programs lean toward pointer-linked data
structures, whose accesses will be more scattered across the memory.




Learning Memory
Access Patterns




What is this paper about?

*This paper demonstrates the potential of deep learning to address the Von Neumann bottleneck
of memory performance.

The von Neumann architecture

CENTRAL PROCESSING UNIT (CPU)

Control unit Arithmetic

() logic unit (ALU) Registers Main memory Input/output

Control bus
w
: L [] []
E Address bus
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Data bus
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The goal is to construct accurate and efficient memory prefetchers while focusing on learning memory
access patterns.

Microarchitectural Prefetchers

Prefetchers are hardware structures that predict future memory access from past history.
They can be separated into two categories: stride prefetchers and correlation prefetchers.

Stride prefetchers are commonly implemented in modern processors and lock onto stable, repeatable
deltas (differences between subsequent memory addresses).

Correlation prefetchers try to learn patterns that may repeat, but are not as consistent.
They store the past history of memory accesses in large tables and are better at predicting more
irregular patterns than stride prefetchers.

Correlation prefetchers require large, costly tables, and are typically not implemented in modern
multi-core processors




Recurrent Neural Networks

=Deep learning is widely used these days for sequential prediction problems.

= STMs have emerged as a popular RNN variant.

*An LSTM is composed of a hidden state h and a cell state ¢, along with input i, forget f, and
output gates o that dictate what information gets stored and propagated to the next time step.
At timestep N, input xN is presented to the LSTM, and the LSTM states are computed using the
following process:

= 1. Compute the input, forget, and output gates
= 2. Update the cell state
= 3. Compute the LSTM hidden (output) state

*The above process forms a single LSTM layer

=LSTM layers can be further stacked so that the output of one LSTM layer at time N becomes the
input to another LSTM layer at time N, allowing for greater modeling flexibility with relatively
few extra parameters.




The prediction problem of prefetching

=Prefetching is the process of predicting future memory accesses that will miss in the on-chip
cache and access memory based on past history.

=Each of these memory addresses are generated by a memory instruction (a load/store).

*Memory instructions are a subset of all instructions that interact with the addressable memory
of the computer system.

*Many hardware proposals use two features to make these prefetching decisions: the sequence
of caches miss addresses that have been observed so far and the sequence of instruction
addresses, also known as program counters (PCs), that are associated with the instruction that
generated each of the cache miss addresses.

=PCs are unique tags, that is each PCis unique to a particular instruction that has been compiled
from a particular function in a particular code file




= An initial model could use two input features at a given timestep N.

=It could use the address and PC that generated a cache miss at that timestep to predict the
address of the miss at timestep N + 1.

= One concern with this approach is that: the address space of an application is extremely sparse.

*In the training data with 100M cache misses, only 10M unique cache block miss addresses
appear on average out of the entire 264 physical address space.




= This can be observed in the figure

*This is an example trace omnetpp 1.6

(a benchmark from the standard Hi; | N

SPEC CPU2006 benchmark suite). %;:

"The wide range and severely g 0.6

multi-modal nature of this space zz

makes it a challenge for ot 5 1o

Miss Number [10° ]
time-series regression models.

*Neural networks tend to work best with normalized inputs, however when normalizing this data,
the finite precision floating-point representation results in a significant loss of information. This
issue affects the modeling at both the input and output levels.




Prefetching as classification

=Rather than treating the prefetching problem as regression, they opt to treat the address space
as a large, discrete vocabulary, and perform classification.

*The idea is that the extreme sparsity of the space, and the fact that some addresses are much
more commonly accessed than others, means that the effective vocabulary size can actually be
manageable for RNN models.

*There are 2764 possible softmax targets, so a quantization scheme is necessary.

"Programs tend to behave in predictable ways so only a relatively small (but still large in absolute
numbers), and consistent set of addresses are ever seen.

*The primary quantization scheme is to therefore create a vocabulary of common addresses
during training, and to use this as the set of targets during testing.

*The second approach explored is to cluster the addresses using clustering on the address space.




=Due to dynamic side-effects such as address space layout randomization (ASLR), different runs of
the same program will lead to different raw address accesses.

"However, given a layout, the program will behave in a consistent manner.

*Therefore, one potential strategy is to predict deltas, AN = AddrN+1-AddrN, instead of
addresses directly.

=These will remain consistent across program executions, and come with the benefit that the
number of uniquely occurring deltas is often orders of magnitude smaller than uniquely
occurring addresses.




Table 1. Program trace dataset statistics. M stands for million.

Dataset # Misses #PC | # Addrs | # Deltas | # Addrs 50% mass | # Deltas 50% mass
gems 500M 3278 | 13.11M 2.47TM 4.28M 18
astar 500M 211 0.53M 1.77M 0.06M 15

bwaves 491M 893 | 14.20M 3.6TM 3.03M 2
Ibm 500M 55 6.60M 709 3.06M 9

leslie3d 500M 2554 1.23M 0.03M 0.23M 15

libquantum 470M 46 0.52M 30 0.26M 1
mcf 500M 174 | 27.41M | 30.82M 0.07M 0.09M
milc 500M 898 3.74M 9.68M 0.87M 46

omnetpp 449M 976 0.71IM 5.01M 0.12M 4613

soplex 500M 1218 3.49M 5.27M 1.04M 10

sphinx 283M 693 0.21IM 0.37M 0.03M 3

websearch 500M | 54600 | 77.76M | 96.41M 0.33M 5186




Models

This paper introduces two LSTM-based prefetching models.

The first version is analogous to a standard language model, while the second exploits the

structure of the memory access space in order to reduce the vocabulary size and reduce the
model memory footprint.




Embedding LSTM

*In this model, the authors restricted the output vocabulary size to model the most frequently
occurring deltas.

=According to Table 1, the size of the vocabulary required in order to obtain at best 50% accuracy
is usually O(1000) or less, well within the capabilities of standard language models.

=This first model therefore restricts the output vocabulary size to 50,000 of the most frequent,
unique deltas.

*For the input vocabulary, we include all deltas as long as they appear in the dataset at least 10
times.

*This model is referred to as the embedding LSTM.

|t uses a categorical (one-hot) representation for both the input and output deltas.
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=A prefetcher can return several predictions. This creates a trade-off, where more predictions
increase the probability of a cache hit at the next timestep.

*The authors opt to prefetch the top-10 predictions of the LSTM at each timestep.

=*LIMITATIONS:
= A large vocabulary increases the model’s computational and storage footprint.

= Truncating the vocabulary necessarily puts a ceiling on the accuracy of the model.




Clustering + LSTM

*This model is looking at the narrower regions of the address space.

*They took the set of addresses from omnetpp and clustered them into 6 different regions using
k-mean.
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=They first cluster the raw address space using K-means. The data is then partitioned into these
clusters, and deltas are computed within each cluster.
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(b) The clustering + LSTM model.
(a) Clustering the address space into separate streams.

Figure 4. The clustering + LSTM data processing and model.




*The set of deltas within a cluster is significantly smaller than the global vocabulary, reducing
some issues with embedding LSTM.

"Here an LSTM is used to model each cluster independently, but the weights of the LSTMs are
tied together.

= Cluster ID is passed as an additional feature, which effectively gives each LSTM a different set
of biases.

*The resulting deltas can be effectively normalized and used as real-valued inputs to the LSTM.

=This allows further reduction in the size of the model, as we do not need to keep around a
large matrix of embeddings.

*The trade-offs are that it requires an additional step of pre-processing to cluster the address
space.

=*And it cannot model the dynamics that cause the program to access different regions of the
address space.




Experiments

=A necessary condition for neural networks to be effective prefetchers is that they must be able to
accurately predict cache misses.

*The experiments here measure their effectiveness in this task when compared with traditional
hardware.

Data Collection

*The data used in the evaluation is a dynamic trace that contains the sequence of memory addresses
that an application computes.

=This trace is captured by using a dynamic instrumentation tool, Pin that attaches to the process and
emits a “PC, Virtual Address” tuple into a file every time the instrumented application accesses
memory (every load or store instruction).




*This raw access trace mostly contains accesses that hit in the cache (such as stack accesses,
which are present in the data cache). Since we are focused on predicting cache misses, we
obtain the sequence of cache misses by simulating this trace through a simple cache simulator
that emulates an Intel Broadwell microprocessor.

"Here they use the memory intensive applications of SPEC CPU2006. This is a standard
benchmark suite that is used pervasively to evaluate the performance of computer systems.
However, SPEC CPU2006 also has small working sets when compared to modern datacenter
workloads. Therefore in addition to SPEC benchmarks, they also include Google’s websearch
workload. Websearch is a unique application with complex access patterns




Experimental Setup

=Each trace is split into a training and testing set using 70% for training and 30% for evaluation,
and train each LSTM on each dataset independently.

Metrics

Precision:

*They measure precision-at-10 which means that each model is allowed to make 10 predictions
at a time.

*The model predictions are deemed correct if the true delta is within the set of deltas given by
the top-10 predictions.




Recall:

*They measure recall-at-10. Each time the model makes predictions, they record this set of 10
deltas.

=At the end, we measure the recall as the cardinality of the set of predicted deltas over the
entire set seen at test-time.

Model Comparison:
*They compare the LSTM-based prefetchers to two state-of-the-art hardware prefetchers.

= The first is a standard stream prefetcher. They simulated a hardware structure that supports
up to 10 simultaneous streams.

*The second is a GHB PC/DC prefetcher. This prefetcher excels at more complex memory access
patterns, but has much lower recall than the stream prefetcher
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Conclusion

Exploiting the benefits of learning and predicting program behavior to unlock control and data
parallelism is not a new concept. However, the conventional approach of table based predictors,
is too costly to scale for data intensive irregular workloads. The models described in this paper
demonstrate significantly higher precision and recall than table-based approaches.

There is a notion of timeliness that is also an important consideration. One simple heuristic is to
predict several steps ahead, instead of just the next step. This would be similar to the behavior

of stream prefetchers.




