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What is the paper about?
§A program can be characterized by its memory access patterns. These patterns are analyzed 
using Machine Learning. 

§These memory accesses are characterized by a sequence of “cache miss rates”.

§A new data set is created. This set draws from programs run on various JVMs, C, and Fortran 
compilers.

§Answer the question: How predictable is a program’s cache miss rate as it executes?



What is a cache miss?
§Modern computers used a deep memory hierarchy.

§It consists of Level 1 data and instruction caches, Level 2 combined caches, and main memory.

§When data is not found in a particular cache it is termed as a miss.

§The miss rate can affect performance greatly.

§How predictable is a program’s miss rate? 



Benchmarks
§To evaluate the efficiency of compilers during a program run certain benchmarks are developed.
§C, C++ have benchmarks like SPEC CPU 2000
§Java programs have benchmarks like DaCapo. 

This paper uses these benchmarks to predict the cache miss rates for the programs.





ANN
§ANNs learn from sequences to predict unseen patterns in NLP.
§In this paper ANN sequence learning techniques are applied to study sequences 
of cache miss rates and find the predictability of these sequences and how they 
vary across programs.

Data Set
For the SPEC CPU 2000 programs and DaCapo Java programs, traces of every 
memory access made by the program in Valgrind (Lackey tool) is captured.



Traces of memory access are just processor accesses giving information like:

<time> <scale> {<cpu>} M<rw><sz><attrib> <addr> <data>

Valgrind is an instrumentation framework for building dynamic analysis tools. There are Valgrind
tools that can automatically detect many memory management and threading bugs, and profile 
your programs in detail.



They mapped virtual addresses to their 64-byte virtual cache line.

Applied the least recently used (LRU) stack algorithm [4] to obtain miss rates for
various cache sizes.

The rates are aggregated over windows of 1,000,000 instructions, for instruction accesses only, 
data only, and both. Thus they obtain six sequences of numbers in the range [0,1] from each trace 
(two cache line sizes × instruction only, data only, both).

Data preprocessing
The cache miss rates are transformed using log10 to show the miss rates close to 0.

To avoid 0 a small epsilon is added to the miss rates.

Values less than -6 is mapped to -6



Models
§Three different kinds of ANNs are used.

§All models have the following characteristics:
§ They are auto-regressive.
§ Have discretized representation in the input and output space.
§ Are commonly applied to sequence learning tasks.

LSTM:
§ Long short-term memory networks.
§ They are successful in sequential modeling because they can capture short and long-term 

dependencies in sequential data.
§ Unrolling LSTMs is a way to transform the recurrent calculations into a single graph without 

recurrence. It leads to faster processing but consumes more memory.



LSTM contd…
§Doing this beyond a particular time step in the history of a sequence leads to heavy 
computation and vanishing gradient issues.

§When there are more layers in the network, the value of the product of the derivative decreases 
until at some point the partial derivative of the loss function approaches a value close to zero, 
and the partial derivative vanishes. This is called the vanishing gradient problem.

§The model accounts for this by allowing unrolling up to a finite number of time steps.

§This model consists of an LSTM layer followed by three fully connected layers.

§The hidden state is forwarded to the next prediction of the model.

§The hidden state contains information about the values prior to the current time step.



WaveNet
§There have been advances in raw audio wave form generation from text and also from 
preceding audio stream using ANNs.

§The similarity, albeit weak, between modeling raw audio wave forms and cache miss rates stems 
from the fact that the both sequences have high frequency components and span a finite range 
of values

§The problem of predicting cache miss rates is analogous to conditional wavelets.

§This paper has modified the WaveNet architecture by replacing the µ−law encoding and 
decoding layers with a linear one.

§Their reasoning for this is that µ−law encoding ignores outliers, and the mid-range values make 
fine-grained distinctions, which need not apply in this case.

§This paper omits stacked dilations, which is a type of convolution. They instead use dilations 
ranging from 2 to 512, increasing exponentially.



Sample RNN
§Sample RNN has achieved good results for audio waveform generation.

§Unlike WaveNet it uses RNNs at different times to model long-term dependencies instead of 
dilated convolutions.

Experimental Results and Insights
§The sequence is discretized into 256 channels for all three models.

§The models are trained to minimize the negative log-likelihood, which is the method of 
estimating the parameters of an assumed probability distribution, given some observed data.



The three VMs have different likelihood estimates.
The majority of the memory traces can be ordered as HotSpot, J9, and Jikes RVM (lowest to 
highest likelihood) and considering that log-likelihoods correspond to the predictability of the 
traces Jikes RVM is seen to have the highest predictability and HotSpot the
lowest. 
This can be attributed to the fact that Jikes RVM uses only compiled execution while
HotSpot combines interpretation and compilation, so its access patterns vary more.



This figure shows how C/Fortran traces differ in log-likelihood.

Fortran programs show very high predictability compared to C programs, which are spread 
across the likelihood spectrum.

The higher predictability of Fortran traces may be because many Fortran programs emphasize 
regular processing across dense arrays, while C programs lean toward pointer-linked data 
structures, whose accesses will be more scattered across the memory.



Learning Memory 
Access  Patterns



What is this paper about?
§This paper demonstrates the potential of deep learning to address the Von Neumann bottleneck 
of memory performance.



The goal is to construct accurate and efficient memory prefetchers while focusing on learning memory 
access patterns.

Microarchitectural Prefetchers
Prefetchers are hardware structures that predict future memory access from past history.

They can be separated into two categories: stride prefetchers and correlation prefetchers.

Stride prefetchers are commonly implemented in modern processors and lock onto stable, repeatable 
deltas (differences between subsequent memory addresses).

Correlation prefetchers try to learn patterns that may repeat, but are not as consistent.
They store the past history of memory accesses in large tables and are better at predicting more 
irregular patterns than stride prefetchers.

Correlation prefetchers require large, costly tables, and are typically not implemented in modern 
multi-core processors



Recurrent Neural Networks
§Deep learning is widely used these days for sequential prediction problems.

§LSTMs have emerged as a popular RNN variant.

§An LSTM is composed of a hidden state h and a cell state c, along with input i, forget f, and 
output gates o that dictate what information gets stored and propagated to the next time step. 
At timestep N, input xN is presented to the LSTM, and the LSTM states are computed using the 
following process:
§ 1. Compute the input, forget, and output gates
§ 2. Update the cell state
§ 3. Compute the LSTM hidden (output) state

§The above process forms a single LSTM layer

§LSTM layers can be further stacked so that the output of one LSTM layer at time N becomes the 
input to another LSTM layer at time N, allowing for greater modeling flexibility with relatively 
few extra parameters.



The prediction problem of prefetching
§Prefetching is the process of predicting future memory accesses that will miss in the on-chip 
cache and access memory based on past history.

§Each of these memory addresses are generated by a memory instruction (a load/store).

§Memory instructions are a subset of all instructions that interact with the addressable memory 
of the computer system.

§Many hardware proposals use two features to make these prefetching decisions: the sequence 
of caches miss addresses that have been observed so far and the sequence of instruction 
addresses, also known as program counters (PCs), that are associated with the instruction that 
generated each of the cache miss addresses.

§PCs are unique tags, that is each PC is unique to a particular instruction that has been compiled 
from a particular function in a particular code file



§ An initial model could use two input features at a given timestep N.

§It could use the address and PC that generated a cache miss at that timestep to predict the 
address of the miss at timestep N + 1.

§ One concern with this approach is that: the address space of an application is extremely sparse.

§In the training data with 100M cache misses, only 10M unique cache block miss addresses 
appear on average out of the entire 2^64 physical address space.



§ This can be observed in the figure 

§This is an example trace omnetpp

(a benchmark from the standard 

SPEC CPU2006 benchmark suite).

§The wide range and severely 

multi-modal nature of this space 

makes it a challenge for 

time-series regression models.

§Neural networks tend to work best with normalized inputs, however when normalizing this data, 
the finite precision floating-point representation results in a significant loss of information. This 
issue affects the modeling at both the input and output levels.



Prefetching as classification
§Rather than treating the prefetching problem as regression, they opt to treat the address space 
as a large, discrete vocabulary, and perform classification.

§The idea is that  the extreme sparsity of the space, and the fact that some addresses are much 
more commonly accessed than others, means that the effective vocabulary size can actually be 
manageable for RNN models.

§There are 2^64 possible softmax targets, so a quantization scheme is necessary.

§Programs tend to behave in predictable ways so only a relatively small (but still large in absolute 
numbers), and consistent set of addresses are ever seen.

§The primary quantization scheme is to therefore create a vocabulary of common addresses 
during training, and to use this as the set of targets during testing.

§The second approach explored is to cluster the addresses using clustering on the address space.



§Due to dynamic side-effects such as address space layout randomization (ASLR), different runs of 
the same program will lead to different raw address accesses.

§However, given a layout, the program will behave in a consistent manner.

§Therefore, one potential strategy is to predict deltas, ∆N = AddrN+1−AddrN , instead of 
addresses directly.

§These will remain consistent across program executions, and come with the benefit that the 
number of uniquely occurring deltas is often orders of magnitude smaller than uniquely 
occurring addresses.





Models
This paper introduces two LSTM-based prefetching models.

The first version is analogous to a standard language model, while the second exploits the 
structure of the memory access space in order to reduce the vocabulary size and reduce the 
model memory footprint.



Embedding LSTM
§In this model, the authors restricted the output vocabulary size to  model the most frequently 
occurring deltas.

§According to Table 1, the size of the vocabulary required in order to obtain at best 50% accuracy 
is usually O(1000) or less, well within the capabilities of standard language models.

§This first model therefore restricts the output vocabulary size to 50,000 of the most frequent, 
unique deltas.

§For the input vocabulary, we include all deltas as long as they appear in the dataset at least 10 
times.

§This model is referred to as the embedding LSTM.

§It uses a categorical (one-hot) representation for both the input and output deltas.





§A prefetcher can return several predictions. This creates a trade-off, where more predictions 
increase the probability of a cache hit at the next timestep.

§The authors opt to prefetch the top-10 predictions of the LSTM at each timestep.

§LIMITATIONS:
§ A large vocabulary increases the model’s computational and storage footprint.
§ Truncating the vocabulary necessarily puts a ceiling on the accuracy of the model.



Clustering + LSTM
§This model is looking at the narrower regions of the address space.

§They took the set of addresses from omnetpp and clustered them into 6 different regions using 
k-mean.



§They first cluster the raw address space using K-means. The data is then partitioned into these 
clusters, and deltas are computed within each cluster.



§The set of deltas within a cluster is significantly smaller than the global vocabulary, reducing 
some issues with embedding LSTM.

§Here an LSTM is used to model each cluster independently, but the weights of the LSTMs are 
tied together.

§ Cluster ID is passed as an additional feature, which effectively gives each LSTM a different set 
of biases.

§The resulting deltas can be effectively normalized and used as real-valued inputs to the LSTM.

§This allows further reduction in  the size of the model, as we do not need to keep around a 
large matrix of embeddings.

§The trade-offs are that it requires an additional step of pre-processing to cluster the address 
space.

§And it cannot model the dynamics that cause the program to access different regions of the 
address space.



Experiments
§A necessary condition for neural networks to be effective prefetchers is that they must be able to 
accurately predict cache misses.

§The experiments here measure their effectiveness in this task when compared with traditional 
hardware.

Data Collection
§The data used in the evaluation is a dynamic trace that contains the sequence of memory addresses 
that an application computes.

§This trace is captured by using a dynamic instrumentation tool, Pin that attaches to the process and 
emits a “PC, Virtual Address” tuple into a file every time the instrumented application accesses 
memory (every load or store instruction).



§This raw access trace mostly contains accesses that hit in the cache (such as stack accesses, 
which are present in the data cache). Since we are focused on predicting cache misses, we 
obtain the sequence of cache misses by simulating this trace through a simple cache simulator 
that emulates an Intel Broadwell microprocessor.

§Here they use the memory intensive applications of SPEC CPU2006. This is a standard 
benchmark suite that is used pervasively to evaluate the performance of computer systems. 
However, SPEC CPU2006 also has small working sets when compared to modern datacenter 
workloads. Therefore in addition to SPEC benchmarks, they also include Google’s websearch
workload. Websearch is a unique application with complex access patterns



Experimental Setup
§Each trace is split into a training and testing set using 70% for training and 30% for evaluation, 
and train each LSTM on each dataset independently.

Metrics
Precision: 

§They measure precision-at-10 which means that each model is allowed to make 10 predictions 
at a time.

§The model predictions are deemed correct if the true delta is within the set of deltas given by 
the top-10 predictions.



Recall:

§They measure recall-at-10. Each time the model makes predictions, they record this set of 10 
deltas.

§At the end, we measure the recall as the cardinality of the set of predicted deltas over the 
entire set seen at test-time.

Model Comparison:

§They compare the LSTM-based prefetchers to two state-of-the-art hardware prefetchers.

§ The first is a standard stream prefetcher. They simulated a hardware structure that supports 
up to 10 simultaneous streams.

§The second is a GHB PC/DC prefetcher. This prefetcher excels at more complex memory access 
patterns, but has much lower recall than the stream prefetcher





Conclusion
Exploiting the benefits of learning and predicting program behavior to unlock control and data 
parallelism is not a new concept. However, the conventional approach of table based predictors, 
is too costly to scale for data intensive irregular workloads. The models described in this paper 
demonstrate significantly higher precision and recall than table-based approaches.

There is a notion of timeliness that is also an important consideration. One simple heuristic is to 
predict several steps ahead, instead of just the next step. This would be similar to the behavior 
of stream prefetchers.


