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Datacenter Network

e Network Flow
o A sequence of packets from a destination to source

e Network Congestion
e Big Switch Assumption and Pitfalls



Traffic Optimization

e Routing Optimizations
e Load balancing
e Scheduling Optimizations




Important Ideas

e Traffic optimizations (TO) require specialized knowledge
e TO based on heuristics
e Turn around time is denominated in weeks



Key Problems when Implementing RL

e Using RL for flow calculation at runtime has high latency
e Calculating flow based on past results in poor performance
e High turn around time of traffic optimization



Traditional RL Approach

e Reinforcement learning for flow scheduling
e Leverages Priority queues
o Flows with higher priorities get processed first

e Deep reinforcement learning is unable to handle datacenter level traffic
o Computation time > Flow life cycle
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Expansion of Past Research
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AuTO

e [wo level system
o Peripheral (PS) and Central (CS)

e Peripheral system on end-hosts = -
o Collects flow information Re‘::::f“e:;e"‘ ' App. Server
o Executes local traffic optimizations Algorithms :
|
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Peripheral System

Collects and tags flows
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Central System

e Uses two RL agents

Short Flows Long Flows
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SRLA in Depth

e Inspired by staged (SEDA) event driven
architecture design
e DDPG

o Actors have two fully-connected hidden layers
o  Outputs optimizes thresholds for MLFQ
o  Critics are three hidden layers

e |everages CDF of flow size distributions
e Optimal set of thresholds to minimize FCT
(flow completion time)

Algorithm 1: DDPG Actor-Critic Update Step

1 Sample a random mini-batch of N transitions
(si,a;.ri,Si+1) from buffer

2 Sety;=r; + YQ,',Q/ (s,-ﬂ,p;y, (5i+1))

3 Update critic by minimizing the loss:
L=ﬁ2§i1 (yi—Qpe (Si’ai))z

4 Update the actor policy using the sampled policy
gradient:

N
Ve#]~%i=zlvoﬂ (si)pge (si)Va,Qge (si,a:i) —
s Update the target networks:

09 «— 769 + (1-1)69
0" — 70" + (1-1)6"

where y and 7 are small values for stable learning
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Evaluation

e How does AuTO compare to standard Heuristics?
e How does AuTO adapt?

e How fast can AuTO respond?

e \What is the system overhead?

System is trained for 8 hours and then compared against generated heuristics



Traffic Distributions

e Characteristics
o flow size, distribution and load

e Homogeneous

e Spatially Heterogeneous

o Cluster of for servers with fixed
characteristics

e Spatially and Temporally

Heterogeneous
o Characteristics change periodically

Figure 7: Testbed topology.
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Homogeneous Traffic
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Spatially Heterogeneous Traffic
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Temporally and Heterogenous Traffic
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Figure 11: Dynamic scenarios: average FCT.

3x108us |

2x108us |

1x108us —

Ous
Ohr

T

T
2hr

|
4hr

T

:
6hr

T

|
8hr

O AuTO
1T QSJF
<>~ QLAS

Figure 12: Dynamic scenarios: p99 FCT.



Impact of MLFQ Thresholds on FCT
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Load Balancing
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Figure 16: Load balancing using IRLA (PG algorithm):
difference in number of long flows on links.



Central Sysetm Latency
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Commentary

e Design can be described as over-complicated

o Does not take into account current network advancements
o System can leverage abstractions of software defined networking

e Scaling implications of an approach that relies on agents on every server
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Reinforcement Learning in Context

e (Congestion Control

o Requires observibility

o Multi-objective management
e Problem Structure

o Multi-agent

o Multi-objective

o Partially observed



Contributions

e PCC-RL
o Capable of maintaining high switch utilization
e OMNeT++ Evaluation Suite

e TJesting Agents
o RLPOMDP



Baseline

Al 4 hosts 8 hosts
& SU| FR | QL || SU | FR | QL
PCC-RL 94 | 77 6 94 | 97 8
DC2QCN | 90 | 91 5 91 | 89 6
HPCC 71 18 3 69 | 60 3
SWIFT 76 | 100 | 11 76 | 98 13
Al 128 to 1 1024 to 1 4096 to 1 8192 to 1
& SU|FR|QL|DR|SU|FR|QL|DR| SU|FR|QL |DR| SU |FR | QL | DR
PCC-RL [[92 [ 95 | 8 0 [9[7015] 0
DC2QCN 9 | 84 8 0 88 | 82 | 17 0
HPCC 83 | 96 o 0 59 | 48 27 0
SWIFT 98 | 99 40 0 91 | 98 | 66 0
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Findings
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