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What is the paper about?

The paper discusses the potential benefits of using deep reinforcement learning techniques for automatic 
database administration. The authors argue that current database management systems (DBMS) require 
significant human intervention, which can lead to errors, inefficiencies and high costs. 

The proposed framework that utilizes reinforcement learning algorithms to automate certain tasks with 
DBMS, such as query optimization, workload management, and index selection. 

The approach is evaluated on a real-world database workload using PostgreSQL and compared with 
traditional methods such as expert systems and rule-based systems. Results show that the deep 
reinforcement learning-based approach outperforms traditional methods in terms of both performance and 
resource usage. 



Context of this work

The authors propose an approach that leverages the power of deep reinforcement learning to automate 
many of the tasks performed by database administrator, including tuning and optimizing database 
parameters, managing resource allocation, and repairing system failures. 

The authors argue that their approach has the potential to improve the efficiency and effectiveness of 
database administration, while reducing the workload and expertise required by human administrators.  



What ML method did they use?

- Deep Reinforcement Learning (DRL), as a primary Machine Learning method. 
- The training process in Reinforcement learning does not require any expected outputs. 
- The training process is completely driven by rewards that tell the learning weather a taken action 

leads to a positive or negative result. 
- The authors defined a problem environment consisting of four components: Input, Actions, Reward 

Function, and Hyper Parameters to perform the learning.
- With right instance of these categories, a neural network can be trained for a given optimization goal 

and a given workload. 



How does it utilize and extend to other work ?

Previous research has focused more on rule-based approaches, where a set of predefined rules and 
heuristics are used to optimize database performance, but they fail to handle the complexity and dynamics 
of modern databases. 

Optimizing database configuration parameters to improve its performance. The agent learns to adjust the 
database’s memory allocation, disk space usage, and other paraments to achieve the best possible 
performance while minimizing downtime and other disruptions.

Using an agent that can learn and adapt to changing database conditions, the authors hope to achieve 
improved performance and reliability compared to other approaches. 



Example of Atari Game Breakout
The workflow of deep reinforcement learning can be applied to a variety of problem, illustrated by the 
example of playing the Atari game Breakout and index selection in database administration. 

The input is the current state of the game board or workload and index configuration

The set of actions includes the possible movements of the paddle or creating an index on a particular column.

The reward function generates positive rewards if the paddle hits the ball or if an index configuration improves 
over the previous state. 

The learning process starts with random and meaningless predictions but over time, the  system learns to 
make better predictions by positioning the paddle closer to the falling ball or selecting better indexes for query 
execution.



Design Advisory Tools

- Classical helper tools for DBAs
- Used by passing a workload file containing a set of SQL queries to come with index 

recommendations.
- Virtual indexes are introduced, which are just descriptions of hypothetical indexes in form of 

metadata that is written into the catalog. 
- The query is tricked into believing that a variety of indexes exist and considers them in finding the 

best query plan. (“tricked” means that the query optimizer is given the impression that there are 
multiple indexes available to use for the query optimization process.)

- When the best query is found,  a recommendation for index creation is returned for every column on 
which an index access occurs in that plan. 



NoDBA - Neural Network Input

- The input to the neural network is typically a combination of the encoding of the workload and the 
current configuration.

- The input is separated into two parts: "workload" and "indexes", which are both fed into the neural 
network.

- In "workload", the characteristics of the workload are encoded in the form of a matrix of size n x m, 
where n is the number of queries in the workload and m is the number of columns in the database 
schema.

- An entry i,j (i < n, j < m) of the matrix describes for a query Qi and a column Cj, the selectivity Sel(Qi, 
Cj)



NoDBA - Set of Actions
- The index selection problem involves finding the best set of indexes to create on a database table to improve 

query performance.
- Reinforcement learning is an approach that trains an agent to take actions that lead to better performance.
- The set of possible actions is limited to creating an index on a specific column or not creating any indexes at 

all.
- Episodic reinforcement learning is used, which means that multiple steps form an episode.
- During each episode, the agent takes one or more actions from the set A (create an index on a specific 

column or not create any indexes at all).
- The agent receives feedback in the form of rewards based on how well its actions improve query 

performance.
- The reward function evaluates the impact of a taken action based on how much it improves or degrades 

performance.
- The agent's objective is to maximize the cumulative reward over the course of an episode, which will lead to 

the selection of the best set of indexes for the database table.



Reward Function

The reward function rates the impact of a taken action based on how much it improves or degrades 
performance.

Positive rewards are returned to the agent if query performance improves after creating an index on a 
column.

Negative rewards are returned if query performance degrades after taking an action.

The specific formula for calculating rewards may vary depending on the problem and goals of reinforcement 
learning.



Evaluation - Setup

- Experiments conducted on desktop PC with specific hardware specs
- Keras-rl used food training, a general reinforcement learning library built on top of Keras
- Keras is a high level neural network API on top of deep learning backends like TensorFlow, Theano, or 

Microsoft Cognitive Toolkit (CNTK)
- Microsoft Cognitive Toolkit with GPU support chosen as backend for this work. 
- Gym Library from OpenAI used for problem environment.
- Optimization of experience replay used in training process to avoid getting stuck in local minima. 



Evaluation Setup

● The TPC-H benchmark is a standard benchmark used to evaluate the performance of database 
systems for decision support applications.

○ It consists of a set of SQL queries that simulate the operations of a typical decision support 
system, such as generating reports or analyzing trends.

○ It includes various table sizes, called "scale factors", which are used to test the performance of 
the system under different workloads.

● In this paper, the authors used the schema and data of the TPC-H benchmark in scale factor 1.
○ Scale factor 1 represents a small dataset, with a total size of 1 GB, which is suitable for testing 

the performance of a single desktop machine.
○ They ran the queries of the benchmark on a PostgreSQL database.



Experiments



Experiment
- The paper evaluates the performance of running SQL 
queries on the LINEITEM table of TPC-H benchmark dataset 
with and without indexes.

- The workloads consist of SELECT COUNT(*) operations with 
different WHERE clauses and a fixed set of attributes of 
LINEITEM.

- The selections are based on randomly chosen columns and 
perform either equality or range selection with values 
randomly selected from a list of actually occurring values.

- Workloads W1 and W2 consist of queries that perform up to 
six selections with a fixed set of attributes of LINEITEM.

- Workload W3 chooses its selections on all attributes of 
LINEITEM.

- NoDBA system performed as good or even better than 
having indexes on all columns for W1 and W2 workloads.

- NoDBA's recommended indexes improved the runtime for 
W3 workload even with selecting only 3 indexes.

- The training time of NoDBA's network was 42 minutes, and 
individual prediction took only around 20ms.



Future Work & Conclusion

- Study focus on using deep reinforcement learning for index selection
- Trained a neural network for this task and showed promising results
- Exploring how to extend this work to other areas of DBMS optimization, such as query optimization
- Investigating the trade-offs of using deep reinforcement learning without cost estimates.
- Authors work represents an important step towards improving DBMS performance and automating 

tedious administration tasks. 



Positive Aspects of the Paper

Has the potential to significantly reduce human intervention, lower the error rate, and improve the overall 
performance of DBMS.

The paper provides a thorough literature review that discusses the current state-of-the-art techniques in 
database administration and highlights the limitations of existing approaches. 

Paper evaluates proposed approach with real-world workload and shows it outperforms traditional methods 
in terms of performance and resource usage, demonstrating potential for improving database management 
efficiency.



Negative Aspects of the Paper

- Need for extensive training data
- Not yet to be implemented in a real-world setting.
- The proposed approach may not be applicable to all types of databases or workloads, as it is 

evaluated only on a specific database using PostgreSQL.



Improving the Proposed Approach with 
Uncertainty Incorporation 

- The proposed approach utilizes reinforcement learning algorithms to automate certain tasks with 
database management systems.

- However, unpredictability in the database workload can impact the performance of the system.
- Incorporating uncertainty into the reinforcement learning algorithm can improve the system's ability 

to handle unexpected spikes in workload.



Too Many Knobs to Tune? Towards Faster 
Database Tuning by Pre-selecting 

Important Knobs 

Authors: 
Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman



What's the purpose & What ML methods did 
they use

Use statistical techniques to pre-select a small set of important knobs that have significant impact on 
performance

ML method they used is Lasso regression, a type of machine learning to identify the most important knobs 
based on their correlation with performance metrics

The results show the proposed approach significantly reduces tuning time and improves performance



Experimental Setup

- The authors studied two popular database systems, Cassandra and PostgreSQL, to better understand 
the impact of different configuration knobs on their performance.

- They used the YCSB-A and YCSB-B workloads from the Yahoo! Cloud Serving Benchmark (YCSB) suite 
to simulate different usage scenarios.

- The authors identified a set of performance-related knobs for each system, tweaking these knobs to 
generate 25,000 unique samples per system-workload pair.

- They standardized the values of each knob to ensure that the range of values did not influence the 
importance of any individual knob in their regression models.

- Using random forest regression models, the authors were able to identify the most important knobs 
for each system and workload.



Important Knobs Identified by Lasso 
Regression for Cassandra and PostegreSQL

- Table 1 summarizes the performance of Apache Cassandra and PostgreSQL databases under different knob configurations for the 
YCSB-A workload.

- The table lists the number of samples and knobs used for each configuration, as well as the throughput, read latency, and write 
latency for each database system.

- The "Baseline" configuration represents the default settings for each database system, while the "Validation" configuration includes 
only the most important knobs identified by the study.

- Apache Cassandra achieved a higher throughput than PostgreSQL for all knob configurations tested in the study.
- By adjusting the top 5 most important knobs, Apache Cassandra achieved a throughput of 99.36% of the baseline, while PostgreSQL 

achieved a throughput of 99.10% of the baseline.



Experimental Setup - Collect Data

- 30 machines with identical hardware specifications were used to parallelize sample collection
- Each machine ran one experiment at a time and was part of the CloudLab infrastructure
- The database system and YCSB clients were run on the same physical machine but isolated on separate CPUs
- Each machine had a 10-core Intel Xeon Silver 4114 CPU with 64 GB of memory and used a 480-GB SSD for 

storage
- Each experiment took approximately 9 minutes to run
- Collecting 25K samples for a single system-workload pair required approximately 3750 node-hours (or a bit 

over 5 days when using 30 nodes)
- The information provides insight into the scale of the study and the resources required to collect data for 

analysis



- Figure 4 shows the relative importance of different knobs for Apache Cassandra and PostgreSQL database systems 
when evaluated with YCSB-A workload

o X-axis represents knobs and y-axis represents their relative importance based on a random forest model

o A handful of knobs are most important for performance optimization under this workload

- Figure 5 shows the impact of different knob values on system throughput for Apache Cassandra and PostgreSQL 
database systems when evaluated with YCSB-A workload

o X-axis represents knob values and y-axis represents throughput in operations per second (ops/sec)

o Changing certain knobs can have a significant impact on system throughput, while changing other knobs 
has little to no impact



Positive Aspects

This paper is well-written and clearly presents the problem, proposed solution, and evaluation results, make 
it easy for reads to understand and follow. 

The authors evaluate their approach on several real-world workloads, demonstrating its effectiveness in 
reducing tuning time and achieving good performance. 



Negative Aspects

Lack of open source implementation

Authors compare the proposed approach to traditional methods for database tuning but the authors do not 
compare their approach to that recently proposed machine learning-based approach that address the same 
problem. 



Conclusion
This study has shown that tuning just a few knobs can lead to optimal performance in database systems. This finding 
is consistent across different workloads and database systems.

The proposed design to accelerate auto-tuning frameworks can potentially improve efficiency in knob tuning, but 
there are still research challenges to be addressed.

One area of research that needs to be explored is the role of hardware in knob tuning. The importance of specific 
knobs may vary across different hardware configurations, and this needs to be studied to avoid retraining existing 
models.

Additionally, while this study focused on optimizing one metric at a time, future research should explore composite 
metrics, where practitioners may want to improve overall throughput while keeping operation latencies within a 
bound.

In summary, this study provides valuable insights into knob tuning for database systems and highlights important 
areas for future research.


